Synlett 2009(5): 803-807  
DOI: 10.1055/s-0028-1087953
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Simple Synthesis of Conjugated All-(E)-Polyenic Aldehydes, Ketones, and Esters Using Chemoselective Cross-Metathesis and an Iterative Sequence of Reactions: Application to the Synthesis of Navenone B

Samir BouzBouz*a,b, Christophe Rochea, Janine Cossy*a
a Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
Fax: +33(1)40794660; e-Mail: janine.cossy@espci.fr; e-Mail: samir.bouzbouz@univ-rouen.fr;
b Laboratoire de Chimie Organique, UFR Médecine-Pharmacie, CNRS, 22 Boulevard Gambetta, 76183 Rouen Cedex 03, France
Further Information

Publication History

Received 15 November 2008
Publication Date:
25 February 2009 (online)

Abstract

By using a very simple sequence of reactions such as allylation, acetylation, chemoselective cross-metathesis, and elimination, even and odd conjugated all-(E)-polyenes can be synthesized from very simple alkenes.

    References and Notes

  • 1a Rychnovsky SD. Richardson TI. Angew. Chem., Int. Ed. Engl.  1995,  34:  1227 
  • 1b Rychnovsky SD. Chem. Rev.  1995,  95:  2021 
  • 2 Pohanka A. Broberg A. Johansson M. Kenne L. Levenfors J. J. Nat. Prod.  2005,  68:  1380 
  • 3 Kamiyama T. Umino T. Fujisaki N. Fujimori K. Satoh T. Yamashita Y. Ohshima S. Watanabe J. Yokose K.
    J. Antibiot.  1993,  46:  1039 
  • See, for example:
  • 4a Maryanoff BE. Reitz AB. Chem. Rev.  1989,  89:  863 
  • 4b Horner L. Hoffmann H. Wippel JHG. Klahre G. Chem. Ber.  1959,  92:  2499 
  • 4c Wadsworth WS. Emmons WD. J. Am. Chem. Soc.  1961,  83:  1733 
  • 5a Corey EJ. Enders D. Bock MG. Tetrahedron Lett.  1976,  7 
  • 5b Schlessinger RH. Poss MA. Richardson S. Lin P. Tetrahedron Lett.  1985,  26:  2391 
  • 5c Desmond R. Mills SG. Volante RP. Shinkai I. Tetrahedron Lett.  1988,  29:  3895 
  • 6a Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  508 
  • 6b Mitchell TN. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1988.  p.167 
  • 6c Farina V. Krihnamurthy V. Scott WJ. The Stille Reaction   John Wiley and Sons; New York: 1998. 
  • 7a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 7b Suzuki A. J. Organomet. Chem.  1999,  576:  147 
  • 7c Suzuki A. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  p.49 
  • 8 Zeng F. Negishi E.-I. Org. Lett.  2001,  3:  719 
  • 9a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  16:  4467 
  • 9b Chinchilla R. Nájera C. Chem. Rev.  2007,  107:  874 
  • 10a Solladié G. Urbano A. Stone GB. Synlett  1993,  548 
  • 10b Solladié G. Colobert F. Kalaï C. Tetrahedron Lett.  1993,  34:  6489 
  • 10c Solladié G. Colobert F. Kalaï C. Tetrahedron Lett.  2000,  41:  4197 
  • 10d Solladié G. Adamy M. Colobert F. J. Org. Chem.  1996,  61:  4369 
  • 11a Julia M. Paris JM. Tetrahedron Lett.  1973,  14:  4833 
  • 11b Kocienski PJ. Lythgoe B. Ruston S. J. Chem. Soc., Perkin Trans. 1  1978,  829 
  • 11c Keck GE. Savin KA. Weglarz MA. J. Org. Chem.  1995,  6:  3194 
  • 11d Blakemore RP. Cole WJ. Kocienski PJ. Morley A. Synlett  1998,  26 
  • 11e Kocienski PJ. Phosphorus Sulfur Relat. Elem.  1985,  24:  97 
  • 11f Kelly SE. Comp. Org. Synth.  1991,  1:  792 
  • 12a Evans DA. Connell BT. J. Am. Chem. Soc.  2003,  125:  10899 
  • 12b Boschelli D. Takemasa T. Nishitani Y. Masamune S. Tetrahedron Lett.  1985,  26:  5339 
  • 13 For the synthesis of compounds of type C and C′, R′ = H, see: Escher I. Glorius F. Aldehydes, In Science of Synthesis   Vol 25:  Brückner R. Thieme; Stuttgart: 2007.  p.711 
  • 14a BouzBouz S. Cossy J. J. Org. Chem.  2001,  3:  1451 
  • 14b BouzBouz S. Cossy J. Org. Lett.  2000,  6:  3469 
  • 15 Kobayashi S. Nishio K. J. Org. Chem.  1994,  59:  6620 ; and references therein
  • 16 Hoveyda AH. Gillingham DG. Van Veldhuizen JJ. Kataoka O. Garber SB. Kingsbury JS. Harrity JPA. Org. Biomol. Chem.  2004,  2:  8 
  • 19 Sleeper HL. Fenical W. J. Am. Chem. Soc.  1977,  99:  2367 
  • 20 For syntheses, see: Crousse B. Mladenova M. Ducept P. Alami M. Linstrumelle G. Tetrahedron  1999,  55:  4353 ; and references therein
17

Synthesis of Compound 4
To a solution of alkene 3 (190 mg, 0.45 mmol) in CH2Cl2 (2.3 mL) was added at r.t. ethyl acrylate (0.15 mL, 1.35 mmol) and Ru-II (14 mg, 0.023 mmol). The reaction mixture was stirred at r.t. overnight and then concentrated in vacuo. Purification of the residue by flash chromatography (hexane/EtOAc, 99:1) afforded 4 (154 mg, 69%) as a yellow oil. R f  = 0.43 (hexane/EtOAc, 9:1). IR: 1739, 1720, 1656, 1232 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.66 (m, 4 H), 7.41 (m, 6 H), 6.83 (dt, J = 15.8, 7.2 Hz, 1 H), 5.85 (dt, J = 15.8, 1.5 Hz, 1 H), 5.76 (m, 1 H), 5.47 (dt, J = 15.5,
6.8 Hz, 1 H), 5.34 (m, 1 H), 4.18 (q, J = 6.8 Hz, 2 H), 3.69 (t, J = 6.4 Hz, 2 H), 2.49 (m, 2 H), 2.28 (q, J = 6.8 Hz, 2 H), 2.02 (s, 3 H), 1.26 (t, J = 6.8 Hz, 3 H), 1.04 (s, 9 H). ¹³C NMR (75 MHz, CDCl3): δ = 170.1, 166.2, 143.3, 135.6, 133.8, 131.6, 129.6, 129.1, 127.6, 124.2, 72.8, 63.1, 60.3, 37.3, 35.6, 26.8, 21.2, 19.2, 14.2. MS: m/z = 377, 241, 199, 105.

18

Synthesis of Compound 5
To a solution of nonconjugated dienic ester 4 (147 mg, 0.30 mmol) in THF (1 mL) was added at r.t. DBU (1 mL, 6.7 mmol). The mixture was stirred for 15 min then neutralized with sat. aq NH4Cl. The layers were separated, and the aqueous phase was extracted with EtOAc. The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (hexane/EtOAc, 95:5) afforded conjugated triene 5 (70 mg, 54%) as a pale yellow oil. R f  = 0.61 (hexane/EtOAc, 9:1). IR: 1710, 1619, 1257 cm.¹H NMR (300 MHz, CDCl3): δ = 7.66 (m, 4 H), 7.41 (m, 6 H), 7.30 (dd, J = 15.5, 11.5 Hz, 1 H), 6.44 (dd, J = 15.1, 10.2 Hz, 1 H), 6.13 (dd, J = 15.1, 11.5 Hz, 1 H), 6.09 (dd, J = 14.8, 10.2 Hz, 1 H), 5.92 (dt, J = 14.8, 6.4 Hz, 1 H), 5.85 (d, J = 15.5 Hz, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 3.69 (t, J = 6.4 Hz, 2 H), 2.39 (q, J = 6.4 Hz, 2 H), 1.26 (t, J = 7.2 Hz, 3 H), 1.04 (s, 9 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.2, 144.7, 140.9, 136.6, 135.6, 133.8, 131.6, 129.6, 128.2, 127.6, 120.3, 63.2, 60.2, 36.3, 26.8, 19.2, 14.3. MS: m/z = 377, 227, 199, 105.