Synlett 2009(3): 490-494  
DOI: 10.1055/s-0028-1087536
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Selective Halogenation of Bithiophenes Using 2-Halopyridazin-3(2H)-ones ­under Ambient Conditions

Kwang-Ju Junga, Seung Beom Kanga, Ju-Eun Wona, Song-Eun Parka, Ki Hun Parkb, Jong Keun Park*c, Sang-Gyeong Leea, Yong-Jin Yoon*a
a Department of Chemistry & Environmental Biotechnology National Core Research Center, Research Institute of Natural Science, Graduate School for Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea
Fax: +82(055)7610244; e-Mail: yjyoon@gnu.ac.kr;
b Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Gyeonsang National University, Jinju 660-701, Korea
c Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea
Further Information

Publication History

Received 25 September 2008
Publication Date:
21 January 2009 (online)

Abstract

2,2′-Bithiophene and halogenated-2,2′-bithiophenes were halogenated with 2-halo-4,5-dichloropyridazin-3(2H)-one in the presence of zinc halide to give selectively the corresponding dihalo-, trihalo-, and tetrahalo-2,2′-bithiophenes involving the same or different halogens in excellent yields, respectively.

    References and Notes

  • For selected examples, see:
  • 1a Getmanenko YA. Twieg RJ. J. Org. Chem.  2008,  73:  830 
  • 1b Zrig S. Koeckelberghs G. Verbiest T. Andrioletti B. Rose E. Persoons A. Asselberghs I. Clays K. J. Org. Chem.  2007,  72:  5855 
  • 1c Takahashi M. Masui K. Sekiguchi H. Kobayashi N. Mori A. Funahashi M. Tamaoki N. J. Am. Chem. Soc.  2006,  128:  10930 
  • 1d Usta H. Lu G. Facchetti A. Marks TJ. J. Am. Chem. Soc.  2006,  128:  9034 
  • 1e Funahashi M. Hanna J.-I. Adv. Mater.  2005,  17:  594 
  • 1f Hassan J. Gozzi C. Schulz E. Lemaire M.
    J. Organomet. Chem.  2003,  687:  280 
  • 1g Facchetti A. Yoon M.-H. Stern CL. Katz HE. Marks TJ. Angew. Chem. Int. Ed.  2003,  42:  3900 
  • 1h McCullough RD. Adv. Mater.  1998,  10:  93 
  • 1i Tour JM. Chem. Rev.  1996,  96:  537 
  • 1j Roncali J. Chem. Rev.  1992,  92:  711 
  • 1k Gus’kova OA. Khalatur PG. Baeuerle P. Khokhlov AR. Chem. Phys. Lett.  2008,  461:  64 
  • 1l Hancock JM. Gifford AP. Champion RD. Jenekhe SA. Macromolecules  2008,  41:  3588 
  • 1m Steen RO. Nurkkala LJ. Angus-Dunne SJ. Schmitt CX. Constable EC. Riley MJ. Bernhardt PV. Dunne SJ. Eur. J. Inorg. Chem.  2008,  1784 
  • 1n Nishiyama F. Ogawa K. Tanaka S. Yokoyama T. J. Phys. Chem. B.  2008,  112:  5272 
  • 1o Yang Z.-Y. Zhang H.-M. Pan G.-B. Wan L.-J. ACS Nano  2008,  2:  743 
  • 1p Ymada R. Kumazawa H. Noutoshi T. Tanaka S. Tada H. Nano Lett.  2008,  8:  1237 
  • 1q Thomas KRJ. Hsu Y.-C. Lin JT. Lee K.-M. Ho K.-C. Lai C.-H. Cheng Y.-M. Chou P.-T. Chem. Mater.  2008,  20:  1830 
  • 1r Chen R. Yang X. Tian H. Wang X. Hagfeldt A. Sun L. Chem. Mater.  2007,  19:  4007 
  • 2a Krasovskiy A. Tishkov A. del Amo V. Mayr H. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  5010 
  • 2b Masui K. Ikegami H. Mori A. J. Am. Chem. Soc.  2004,  126:  5074 
  • 2c Kobayashi K. Sugie A. Takahashi M. Masui K. Mori A. Org. Lett.  2005,  7:  5083 
  • 2d Wang NX. Synth. Commun.  2003,  33:  2119 
  • 2e Hassan J. Lavenot L. Gozzi C. Lemaire M. Tetrahedron Lett.  1999,  40:  857 
  • 2f Antolini L. Goldoni F. Iarossi D. Mucci A. Schenetti L. J. Chem. Soc., Perkin Trans. 1  1997,  1957 
  • 3a Bauerle P. Wurthner F. Gotz G. Effenberger F. Synthesis  1993,  1099 
  • 3b Okamoto T. Kakinami T. Fujimoto H. Kajigaeshi S. Bull. Chem. Soc. Jpn.  1991,  64:  2566 
  • 3c Sone T. Sakai K. Kuroda K. Bull. Chem. Soc. Jpn.  1970,  43:  1411 
  • 3d Nenajdenko VG. Barazenenok IL. Balenkova ES. J. Org. Chem.  1998,  63:  6132 
  • 3e Kellogg RM. Schaap AP. Wynberg H. J. Org. Chem.  1969,  34:  343 
  • 4 Mack AG. Suschitzky H. Wakefield BJ. J. Chem Soc., Perkin Trans. 1  1980,  1682 
  • 5 Yui K. Aso Y. Otsubo T. Ogura F. Bull. Chem. Soc. Jpn.  1989,  62:  1539 
  • 6a Books and reviews: Tisler M. Stanovnik B. In Comprehensive Heterocyclic Chemistry   Vol. 3:  Katritzky AR. Rees CW. Pergamon; New York: 1984.  p.1-56  
  • 6b Coates WJ. In Comprehensive Heterocyclic Chemistry II   Vol. 6:  Katritzky AR. Rees CW. Scriven EV. Pergamon; New York: 1996.  p.1-92  
  • 6c Heterocyclic Chemistry   3rd ed.:  Joule JA. Mills K. Smith GF. Chapman & Hill; London: 1996. 
  • 6d Handbook of Heterocyclic Chemistry   2nd ed.:  Katritzky AR. Pozharskii AF. Pergamon; New York: 2000. 
  • 6e Lee SG. Kim JJ. Kim HK. Kweon DH. Kang YJ. Cho SD. Kim SK. Yoon YJ. Curr. Org. Chem.  2004,  8:  1463 
  • 7a Won JE. Kim HK. Kim JJ. Yim HS. Kim MJ. Kang SB. Chung HA. Lee SG. Yoon YJ. Tetrahedron  2007,  63:  12720 
  • 7b Park YD. Kim JJ. Cho SD. Lee SG. Falck JR. Yoon YJ. Synthesis  2005,  1136 
  • 7c Kim JJ. Kweon DH. Cho SD. Kim HK. Jung EY. Lee SD. Falck JR. Yoon YJ. Tetrahedron  2005,  61:  5889 
  • 7d Kim JJ. Park YD. Kweon DH. Kang YJ. Kim HK. Lee SG. Cho SD. Lee WS. Yoon YJ. Bull. Korean Chem. Soc.  2004,  25:  501 
  • 7e Park YD. Kim HK. Kim JJ. Cho SD. Kim SK. Shiro M. Yoon YJ. J. Org. Chem.  2003,  68:  9113 
  • 7f Park YD. Kim JJ. Chung HA. Kweon DH. Cho SD. Lee SG. Yoon YJ. Synthesis  2003,  560 
  • 7g Kim JJ. Park YD. Lee WS. Cho SD. Yoon YJ. Synthesis  2003,  1517 
  • 7h Kang YJ. Chung HA. Kim JJ. Yoon YJ. Synthesis  2002,  733 
  • 7i Kweon DH. Kim HK. Kim JJ. Chung HA. Lee WS. Kim SK. Yoon YJ. J. Heterocycl. Chem.  2002,  39:  203 
  • 8 Kim JJ. Kweon DH. Cho SD. Kim HK. Lee SG. Yoon YJ. Synlett  2006,  194 
  • 10 Andriano C. Tetrahedron  1985,  41:  1919 
  • 11 Abu-Eittah RH. Al-Sugeir FA. Bull. Chem. Soc. Jpn.  1985,  58:  2126 
  • 12 Lightowler S. Chem. Mater.  2005,  17:  5538 
  • 13 Van Pham C. Burkhardt A. Shabanas R. Cunningham D. Mark HB. Zimmer H. Phosphorus, Sulfur Silicon Relat. Elem.  1989,  46:  153 
  • 14 Joule JA. Mills K. Smith GF. Heterocyclic Chemistry   3rd ed.:  Chapman & Hall; London: 1996.  p.225-228  
9

General Procedure To a solution of zinc halide (1 mol%), 2-halo-4,5-dichloro-pyridazin-3 (2H)-one 2 (1-5 equiv), and CH2Cl2 (50 mL), bithiophenes (1 equiv) were added with stirring at r.t. Then, the reaction mixture was stirred until the 2 disappeared by TLC monitoring. The reaction mixture was filtered using Celite-545 pad, and washed with EtOAc (10-20 mL). The combined filtrate was evaporated under reduced pressure. The resulting residue was applied to the top of open-bed silica gel column (3 × 20 cm), and the column was eluted with n-hexane. Fractions containing the product were combined and evaporated under reduced pressure to give product. 5-Chloro-2,2′-bithiophene (3a)
Liquid; R f  = 0.56 (n-hexane). IR (KBr): 3070, 3043, 1507, 1421, 1065, 1001, 869, 789 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.21 (dd, 1 H, J = 1.2, 5.1 Hz), 7.09 (dd, 1 H, J = 1.2, 3.6 Hz), 6.99 (dd, 1 H, J = 3.6, 5.1 Hz), 6.92 (d, 1 H, J = 3.9 Hz), 6.82 (d, 1 H, J = 3.9 Hz) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 136.50, 136.03, 128.65, 127.86, 126.86, 124.76, 123.93, 122.86 ppm. HRMS (EI): m/z calcd for C8H5ClS2: 199.9521; found: 199.9519. Anal. Calcd for C8H5ClS2: C, 47.87; H, 2.51. Found: C, 47.90; H, 2.55. 5-Bromo-2,2′-bithiophene (3b)
Colorless crystals; mp 33 ˚C (recrystallization from CHCl3; lit. [¹0] mp 32-33 ˚C), R f  = 0.51 (n-hexane). IR (KBr): 3099, 3082, 3066, 1501, 1439, 1414, 1350, 1198, 1074, 1051, 966, 879, 835, 820, 787, 690, 644, 611, 455 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.20 (dd, 1 H, J = 1.2, 5.1 Hz), 7.09 (dd, 1 H, J = 1.2, 3.6 Hz), 6.99 (dd, 1 H, J = 3.6, 5.1 Hz), 6.95 (d, 1 H, J = 3.8 Hz), 6.89 (d, 1 H, J = 3.8 Hz) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 138.93,136.42, 130.58, 127.85, 124.82, 124.06, 123.85, 110.93 ppm. HRMS (EI): m/z calcd for C8H5BrS2: 243.9016; found: 243.9012. Anal. Calcd for C8H5BrS2: C, 39.19; H, 2.06. Found: C, 39.21; H, 2.10. 5,5′-Dichloro-2,2′-bithiophene (4a)
Colorless crystals; mp 109 ˚C (recrystallization from CHCl3; lit. [¹¹] mp 109-110 ˚C); R f  = 0.64 (n-hexane). IR (KBr): 3095, 1504, 1418, 1137, 1075, 1012, 857, 816, 785 cm. ¹H NMR (300 MHz, CDCl3) δ = 6.85 (d, 2 H, J = 3.9 Hz), 6.81 (d, 2 H, J = 3.9 Hz) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 135.03, 129.18, 126.91, 123.06 ppm. HRMS (EI): m/z calcd for C8H4Cl2S2: 233.9131; found: 233.9130. Anal. Calcd for C8H4Cl2S2: C, 40.86; H, 1.71. Found: C, 40.90; H, 1.74. 5,5′-Dibromo-2,2′-bithiophene (4b)
Colorless crystals; mp 141 ˚C (recrystallization from CHCl3; lit. [¹a] mp 147 ˚C, mp 146 ˚C, [¹²] mp 142 ˚C [¹³] ); R f  = 0.59 (n-hexane). IR (KBr): 3090, 3067, 3036, 2922, 1732, 1535, 1497, 1454, 1412, 1317, 1196, 1057, 966, 864, 814, 789, 623, 604, 455 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.98 (d, 2 H, J = 3.9 Hz), 6.87 (d, 2 H, J = 3.9 Hz) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 137.81, 130.66, 124.16, 111.55 ppm. HRMS (EI): m/z calcd for C8H4Br2S2: 321.8121; found: 321.8126. Anal. Calcd for C8H5 Br2S2: C, 29.65; H, 1.24. Found: C, 29.68; H, 1.29. 5-Bromo-5′-chloro-2,2′-bithiophene (4c)
Colorless crystals; mp 123 ˚C; R f  = 0.64 (n-hexane). IR (KBr): 3069, 3040, 1730, 1578, 1541, 1504, 1418, 1342, 1279, 1196, 1065, 999, 966, 868, 791, 633, 457 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.98 (d, 1 H, J = 3.8 Hz), 6.88 (d, 1 H, J = 3.9 Hz), 6.85 (d, 1 H, J = 4.0 Hz), 6.84 (d, 1 H, J = 4.0 Hz) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 137.90, 134.94, 130.65, 129.28, 126.95, 124.04, 123.18, 111.43 ppm. HRMS (EI): m/z calcd for C8H4BrClS2: 277.8626; found: 277.8626. Anal. Calcd for C8H4BrClS2: C, 34.36; H, 1.44. Found: C, 34.39; H, 1.50. 3,5,5′-Trichloro-2,2′-bithiophene (5a)
Colorless crystals; mp 99 ˚C (recrystallization from CHCl3; lit. [³c] mp 102-103 ˚C), R f  = 0.69 (n-hexane). IR (KBr): 3097, 2925, 1499, 1402, 1305, 1136, 1012, 812 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.02 (d, 1 H, J = 4.0 Hz), 6.87 (d,
1 H, J = 4.0 Hz), 6.79 (s, 1 H) ppm. ¹³C NMR(75 MHz, CDCl3): δ = 131.35, 131.19, 128.56, 128.28, 127.86, 127.05, 126.24, 125.48, 120.06 ppm. HRMS (EI): m/z calcd for C8H3Cl3S2: 267.8742; found: 267.8742. Anal. Calcd for C8H3Cl3S2: C, 35.64; H, 1.12. Found: C, 35.68; H, 1.17. 3,5,5′-Tribromo-2,2′-bithiophene (5b)
Colorless crystals; mp 84 ˚C; R f  = 0.63 (n-hexane). IR (KBr): 3090, 2953, 2922, 2851, 1732, 1680, 1535, 1493, 1464, 1450, 1410, 1371, 1283, 1240, 1219, 1130, 1063, 1018, 974, 866, 814, 785, 638, 453 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.05 (d, 1 H, J = 3.9 Hz), 7.02 (d, 1 H, J = 3.9 Hz), 6.98 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 134.78, 133.80, 133.14, 130.03, 127.08, 113.79, 111.57, 107.32 ppm. HRMS (EI): m/z calcd for C8H3Br3S2: 399.7226; found: 399.7215. Anal. Calcd for C8H3Br3S2: C, 23.85; H, 0.75. Found: C, 23.87; H, 0.80. 3,3′,5,5′-Tetrachloro-2,2′-bithiophene (6a)
Colorless crystals; mp 113-114 ˚C (recrystallization from CHCl3; lit. [³c] mp 120-121); R f  = 0.73 (n-hexane). IR (KBr): 3095, 2932, 1509, 1418, 1301, 1125, 1007, 811 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.88 (s, 2 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 131.09, 127.05, 124.33, 123.63 ppm. HRMS (EI): m/z calcd for C8H2Cl4S2: 301.8352; found: 301.8352. Anal. Calcd for C8H2Cl4S2: C, 31.60; H, 0.66. Found: C, 31.63; H, 0.69. 3,3′,5,5′-Tetrabromo-2,2′-bithiophene (6b)
Colorless crystals; mp 140 ˚C (recrystallization from CHCl3; lit. [5] mp 138-140 ˚C); R f  = 0.66 (n-hexane). IR (KBr): 3097, 2920, 2851, 1537, 1479, 1447, 1393, 1288, 1126, 980, 920, 872, 827, 800, 739, 669, 584, 503, 469 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.07 (s, 2 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 133.01, 129.59, 114.82, 112.13 ppm. HRMS (EI): m/z calcd for C8H2Br4S2: 477.6331; found: 477.6335. Anal. Calcd for C8H2Br4S2: C, 19.94; H, 0.42. Found: C, 20.00; H, 0.48. 3,3′,5-Tribromo-5′-chloro-2,2′-bithiophene (6c)
Colorless crystals; mp 125 ˚C;, R f  = 0.69 (n-hexane). IR (KBr): 3099, 1539, 1485, 1452, 1396, 1315, 1292, 1230, 1198, 1128, 1011, 978, 874, 831, 798, 675, 586, 474 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.04 (s, 1 H), 6.92 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 132.98, 132.55, 129.56, 126.69, 114.80, 112.17, 111.47, 111.41 ppm. HRMS (EI): m/z calcd for C8H2Br3ClS2: 433.6837; found: 433.6841. Anal. Calcd for C8H2Br3ClS2: C, 21.97; H, 0.46. Found: C, 22.01; H, 0.49. 5-Bromo-3,3′,5′-trichloro-2,2′-bithiophene (6d)
Colorless crystals; mp 125 ˚C; R f  = 0.71 (n-hexane). IR (KBr): 3094, 2920, 2851, 1742, 1717, 1701, 1634, 1495, 1456, 1398, 1373, 1302, 1215, 1136, 1014, 982, 812, 685, 590, 465 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.98 (s,
1 H), 6.86 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 131.12, 130.52,127.15, 127.06, 124.40, 124.35, 123.62, 113.41 ppm. HRMS (EI): m/z calcd for C8H2BrCl3S2: 345.7847; found: 345.7845. Anal. Calcd for C8H2BrCl3S2: C, 27.57; H, 0.58. Found: C, 27.59; H, 0.62. 3,3′-Dibromo-5,5′-dichloro-2,2′-bithiophene (6e)
Colorless crystals; mp 103 ˚C; R f  = 0.69 (n-hexane). IR (KBr): 3101, 2952, 2922, 2851, 1537, 1489, 1455, 1419, 1401, 1295, 1131, 1074, 1016, 833, 799, 683, 588, 478, 460, 439 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.91 (s, 2 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 132.52, 129.55, 126.72, 111.47 ppm. HRMS (EI): m/z calcd for C8H2Br2Cl2S2: 389.7342; found: 389.7340. Anal. Calcd for C8H2Br2Cl2S2: C, 24.45; H, 0.51. Found: C, 24.47; H, 0.56. 5,5′-Dibromo-3,3′-dichloro-2,2′-bithiophene (6f)
Colorless crystals; mp 124 ˚C; R f  = 0.75 (n-hexane). IR (KBr): 3090, 2953, 2922, 2853, 1636, 1491, 1464, 1394, 1298, 1134, 980, 924, 814, 675, 590, 461 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.99 (s, 2 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 133.00, 130.53, 124.39, 113.46 ppm. HRMS (EI): m/z calcd for C8H2Br2Cl2S2: 389.7342; found: 389.7346. Anal. Calcd for C8H2Br2Cl2S2: C, 24.45; H, 0.51. Found: C, 24.48; H, 0.57.