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Introduction

In 1968, E. M. Burgess discovered that methyl N-
(triethylammoniumsulphonyl) carbamate salt (1),1 com-
monly known as the Burgess reagent, could be used as a
mild and selective dehydrating agent2 for the conversion
of secondary and tertiary alcohols into alkenes. The dehy-
dration occurs through an internal elimination (Ei) mech-
anism resulting in syn-elimination. In recent years there
has been a revival of interest in the Burgess reagent3 due
to its versatility in synthetically useful transformations
that have facilitated functional group conversions. The

reagent is highly soluble in most common organic sol-
vents including those that are non-polar. The most note-
worthy application has been in the cyclodehydration of
hydroxy amides and thioamides to afford corresponding
heterocycles. Because of the mild conditions as well as
high selectivity, the reagent has received wide acceptance
in the area of synthetic chemistry.

Scheme 1 Preparation of the Burgess reagent.
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(A) Claremon and co-workers described an efficient chemoselective
synthesis of nitriles from various primary amides in the presence of
the Burgess reagent (1).4 The reagent is compatible with other func-
tionalities precluding the need for functional group protection.

(B) Miller and Kaufman reported the mild and efficient dehydration
of oximes to nitriles mediated by Burgess reagent (1) or PEG-
Burgess reagent.5 The method is compatible with acid sensitive
functionalities.

(C) Nitrile oxides are highly reactive intermediates that are normally
generated in situ usually in the presence of a suitable dienophile.
Mioskowski et al. developed an efficient and convenient synthesis
of synthetically useful nitrile oxides from primary nitro-alkanes by
using the Burgess reagent.6

(D) Isocyanides have widespread applications in synthetic chemis-
try especially in multicomponent coupling reactions. McCarthy et
al. have reported a very convenient route towards the synthesis of
isocyanides from formamides by using the Burgess reagent (1).7

This is particularly useful for substrates containing halide-sensitive
TMS ether groups.
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(E) Hudlicky and co-workers have applied the Burgess reagent (1)
in the synthesis of trans-sulfamidates via epoxide ring-opening. Re-
cently, they have developed a chiral version of the reagent (2) to
synthesize cis-sulfamidates which can be converted to synthetically
useful cis- and trans-amino alcohols.8

(F) Sulfamides and sulfamidates are important pharmacophores and
can be readily converted to other derivatives. Nicolaou and co-
workers showed that 1,2-diols9 and epoxy-alcohols9 react with the
Burgess reagent (1) to form both symmetrical and non-symmetrical
sulfamidates, whereas amino-alcohols10 react with the Burgess re-
agent (1) to form both symmetrical and non-symmetrical sulf-
amides.

(G) Glycosylamines are prominent in glycopeptides and glycopro-
teins and have selective RNA-binding ability. However, existing
methods lack substrate compatibility and result in variable stereose-
lectivity (a/b). Nicolaou and co-workers reported a convenient
method for the synthesis of both a- and b-glycosylamines in the
presence of the Burgess reagent (1).11

(H) The acyl urea moiety has been an important functional handle in
medicinal chemistry and has been widely incorporated in commer-
cial drugs. Makara and co-workers reported that the Burgess reagent
(1) can be used to activate carboxylic acids and can be treated with
amines to synthesize acyl ureas and amides under microwave irradi-
ation. This method is very convenient because it directly converts
carboxylic acids into the acyl urea moiety.12

(I) Hudlicky and co-workers reported a convenient synthesis of di-
sulfides from thiols in the presence of the Burgess reagent (1).13 This
method has several advantages over other methods since no external
base is required, it is easy to prepare and provides the products in
high yields.

(J) Sulfimines have useful applications in synthesis, catalysis and
medicinal chemistry. Recently, Raghavan and co-workers have
shown that sulfilimines can be easily prepard from solfoxides in
presence of Burgess reagent (1) at room temperature.14
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