Horm Metab Res 2009; 41(1): 35-39
DOI: 10.1055/s-0028-1087188
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Contrasting Effects of Eplerenone and Spironolactone on Adrenal Cell Steroidogenesis

P. Ye 1 , T. Yamashita 2 , D. M. Pollock 3 , H. Sasano 2 , W. E. Rainey 1
  • 1Department of Physiology, Medical College of Georgia, Augusta, GA, USA
  • 2Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
  • 3Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
Further Information

Publication History

received 14.04.2008

accepted 12.06.2008

Publication Date:
25 September 2008 (online)

Abstract

Spironolactone and eplerenone are widely used as mineralocorticoid antagonists. Spironolactone has several nonspecific actions including inhibition of androgen receptor and steroid hormone biosynthesis. While studies have shown that eplerenone does not exhibit nonspecific actions on androgen receptor, its effects on steroid hormone production have not been reported. Herein, the effects of eplerenone (0.1–30 μM) and spironolactone (0.1–30 μM) on steroid production were examined in human adrenocortical H295R cells. Spironolactone inhibited basal production of cortisol (91%) and aldosterone (53%). Treatment of H295R cells with angiotensin II (Ang II) for 24 h increased aldosterone production by 11-fold. Spironolactone inhibited Ang II stimulation of aldosterone production by 80%. Addition of pregnenolone increased aldosterone (9-fold) and cortisol (3-fold) production. Spironolactone inhibited pregnenolone metabolism to aldosterone (67%) and cortisol (74%). The inhibitory effects of spironolactone occurred at concentrations far higher than those needed to block mineralocorticoid receptor, suggesting an action directly on the enzymes involved in steroid production. In contrast, eplerenone did not inhibit basal, Ang II, forskolin, pregnenolone-stimulated cortisol, or aldosterone production. Together, these data demonstrate that opposed to spironolactone, pharmacologic concentrations of eplerenone do not inhibit adrenal cell aldosterone or cortisol production.

References

  • 1 Duprez D, Buyzere M De, Rietzschel ER, Clement DL. Aldosterone and vascular damage.  Curr Hypertens Rep. 2000;  2 327-334
  • 2 Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis.  J Clin Invest. 1994;  93 2578-2583
  • 3 Kornel L. Colocalization of 11 beta-hydroxysteroid dehydrogenase and mineralocorticoid receptors in cultured vascular smooth muscle cells.  Am J Hypertens. 1994;  7 100-103
  • 4 Bonvalet JP, Alfaidy N, Farman N, Lombes M. Aldosterone: intracellular receptors in human heart.  Eur Heart J. 1995;  16 ((Suppl N)) 92-97
  • 5 Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor.  Circ Res. 1992;  71 503-510
  • 6 Beggah AT, Escoubet B, Puttini S, Cailmail S, Delage V, Ouvrard-Pascaud A, Bocchi B, Peuchmaur M, Delcayre C, Farman N, Jaisser F. Reversible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes.  Proc Natl Acad Sci USA. 2002;  99 7160-7165
  • 7 Ouvrard-Pascaud A, Sainte-Marie Y, Benitah JP, Perrier R, Soukaseum C, Cat AN, Royer A, Le Quang K, Charpentier F, Demolombe S, Mechta-Grigoriou F, Beggah AT, Maison-Blanche P, Oblin ME, Delcayre C, Fishman GI, Farman N, Escoubet B, Jaisser F. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias.  Circulation. 2005;  111 3025-3033
  • 8 Qin W, Rudolph AE, Bond BR, Rocha R, Blomme EA, Goellner JJ, Funder JW, MacMahon EG. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure.  Circ Res. 2003;  93 69-76
  • 9 Marney AM, Brown NJ. Aldosterone and end-organ damage.  Clin Sci (Lond). 2007;  113 267-278
  • 10 Brown NJ. Aldosterone and vascular inflammation.  Hypertension. 2008;  51 161-167
  • 11 Brown NJ. Aldosterone and end-organ damage.  Curr Opin Nephrol Hypertens. 2005;  14 235-241
  • 12 Rossi GP, Sechi LA, Giacchetti G, Ronconi V, Strazzullo P, Funder JW. Primary aldosteronism: cardiovascular, renal and metabolic implications.  Trends Endocrinol Metab. 2008;  19 88-90
  • 13 Pitt B, Pierard LA, Bilge A, Bourassa G, White M, Lepage S, Castaigne A, Aumont MC, Charbonnier B, Pacouret G, Just H, Heitzer T, Riegger GA, Kramer B, Pilz M, Alcocer L, Avila L, Lie KI, Girbes A, Remme WJ, vanderEnt M, CerqueiraGomes M, Brandao F, Cardoso JS, Polonia J, SolerSoler J, Galve EB, LopezSendon JL, Kappenberger L, Beuret P, Hess OMU, Meyer I, Tan LB, Hamid A, Hubner PJB, Nicklas J, Blumenfeld J, Laragh JH, Cody RJ, Julian D, Boissel JP, Furberg C, Kulbertus H, Pocock S, Hall C, Cody R, Riegger G. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]).  Am J Cardiol. 1996;  78 902-907
  • 14 Pitt B, Williams G, Remme W, Martinez F, Lopez-Sendon J, Zannad F, Neaton J, Roniker B, Hurley S, Burns D, Bittman R, Kleiman J. The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study.  Cardiovasc Drugs Ther. 2001;  15 79-87
  • 15 Zarren HS, Black PM. Unilateral gynecomastia and impotence during low-dose spironolactone administration in men.  Mil Med. 1975;  140 417-419
  • 16 Greenblatt DJ, Koch-Weser J. Gynecomastia and impotence: complications of spironolactone therapy.  JAMA. 1973;  223 82
  • 17 Whitebread S, Mele M, Kamber B, Gasparo M de. Preliminary biochemical characterization of two angiotensin II receptor subtypes.  Biochem Biophys Res Commun. 1989;  163 284-291
  • 18 Shrago SS, Waisman J, Cooper PH. Spironolactone bodies in an adrenal adenoma.  Arch Pathol. 1975;  99 416-420
  • 19 Aiba M, Suzuki H, Kageyama K, Murai M, Tazaki H, Abe O, Saruta T. Spironolactone bodies in aldosteronomas and in the attached adrenals. Enzyme histochemical study of 19 cases of primary aldosteronism and a case of aldosteronism due to bilateral diffuse hyperplasia of the zona glomerulosa.  Am J Pathol. 1981;  103 404-410
  • 20 Perroteau I, Netchitailo P, Delarue C, Leboulenger F, Philibert D, Deraedt R, Vaudry H. The effect of the antimineralocorticoid RU 28318 on aldosterone biosynthesis in vitro.  J Steroid Biochem. 1984;  20 853-856
  • 21 Netchitailo P, Perroteau I, Delarue C, Leboulenger F, Capron MH, Vaudry H. Direct action of mineralocorticoid antagonists on biosynthesis of aldosterone: comparative activities of several new compounds.  Can J Physiol Pharmacol. 1983;  61 23-28
  • 22 Netchitailo P, Delarue C, Perroteau I, Jegou S, Tonon MC, Leroux P, Leboulenger F, Kusmierek MC, Capron MH, Vaudry H. Effect of aldosterone antagonists on mineralocorticoid synthesis in vitro. Inhibition of aldosterone production by prorenoate-K.  Eur J Pharmacol. 1982;  77 243-249
  • 23 Netchitailo P, Delarue C, Perroteau I, Leboulenger F, Capron MH, Vaudry H. Relative inhibitory potency of five mineralocorticoid antagonists on aldosterone biosynthesis in vitro.  Biochem Pharmacol. 1985;  34 189-194
  • 24 Colby HD. Chemical suppression of steroidogenesis.  Environ Health Perspect. 1981;  38 119-127
  • 25 Penhoat A, Darbeida H, Bernier M, Saez JM, Durand P. Inhibition of hormonal-induced cAMP and steroid production by inhibitors of pregnenolone metabolism in adrenal and Leydig cells.  Mol Cell Endocrinol. 1988;  60 55-60
  • 26 Walsh PC, Siiteri PK. Suppression of plasma androgens by spironolactone in castrated men with carcinoma of the prostate.  J Urol. 1975;  114 254-256
  • 27 Eplerenone: new drug . Recent myocardial infarction with heart failure: a spironolactone me too.  Prescrire Int. 2006;  15 46-49
  • 28 Williams GH, Burgess E, Kolloch RE, Ruilope LM, Niegowska J, Kipnes MS, Roniker B, Patrick JL, Krause SL. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension.  Am J Cardiol. 2004;  93 990-996
  • 29 Weinberger MH, White WB, Ruilope LM, MacDonald TM, Davidson RC, Roniker B, Patrick JL, Krause SL. Effects of eplerenone versus losartan in patients with low-renin hypertension.  Am Heart J. 2005;  150 426-433
  • 30 White WB, Duprez D, St Hillaire R, Krause S, Roniker B, Kuse-Hamilton J, Weber MA. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension.  Hypertension. 2003;  41 1021-1026
  • 31 Rainey WE, Bird IM, Mason JI. The NCI-H295 cell line: a pluripotent model for human adrenocortical studies.  Mol Cell Endocrinol. 1994;  100 45-50
  • 32 Odermatt A, Arnold P, Frey FJ. The intracellular localization of the mineralocorticoid receptor is regulated by 11beta-hydroxysteroid dehydrogenase type 2.  J Biol Chem. 2001;  276 28484-28492
  • 33 Sharma KK, Lindqvist A, Zhou XJ, Auchus RJ, Penning TM, Andersson S. Deoxycorticosterone inactivation by AKR1C3 in human mineralocorticoid target tissues.  Mol Cell Endocrinol. 2006;  248 79-86
  • 34 Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension.  N Engl J Med. 1991;  324 1098-1104
  • 35 Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, Faire U de, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol.  Lancet. 2002;  359 995-1003
  • 36 Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators.  N Engl J Med. 2000;  342 145-153
  • 37 Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group.  N Engl J Med. 1993;  329 1456-1462
  • 38 Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.  N Engl J Med. 2001;  345 851-860
  • 39 Sato A, Saruta T, Funder JW. Combination therapy with aldosterone blockade and renin-angiotensin inhibitors confers organ protection.  Hypertens Res. 2006;  29 211-216
  • 40 Karagiannis A, Tziomalos K, Kakafika A, Florentin M, Athyros VG. Eplerenone relieves spironolactone-induced painful gynaecomastia in a patient with primary aldosteronism.  Nephrol Dial Transplant. 2007;  22 293
  • 41 Funder JW, Mercer JE, Ulick S, Marver D, Adam WR. Toward more specific aldosterone antagonists. A radioreceptor assay approach.  Circ Res. 1980;  46 I101-I102
  • 42 Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators.  N Engl J Med. 1999;  341 709-717
  • 43 Keating GM, Plosker GL. Eplerenone: a review of its use in left ventricular systolic dysfunction and heart failure after acute myocardial infarction.  Drugs. 2004;  64 2689-2707
  • 44 Garthwaite SM, MacMahon EG. The evolution of aldosterone antagonists.  Mol Cell Endocrinol. 2004;  217 27-31
  • 45 Menard J. The 45-year story of the development of an anti-aldosterone more specific than spironolactone.  Mol Cell Endocrinol. 2004;  217 45-52
  • 46 Menard RH, Bartter FC, Gillette JR. Spironolactone and cytochrome P-450: impairment of steroid 21-hydroxylation in the adrenal cortex.  Arch Biochem Biophys. 1976;  173 395-402
  • 47 Greiner JW, Kramer RE, Jarrell J, Colby HD. Mechanism of action of spironolactone on adrenocortical function in guinea pigs.  J Pharmacol Exp Ther. 1976;  198 709-715
  • 48 Rourke KA, Bergstrom JM, Larson IW, Colby HD. Mechanism of action of spironolactone on cortisol production by guinea pig adrenocortical cells.  Mol Cell Endocrinol. 1991;  81 127-134
  • 49 Menard RH, Guenthner TM, Kon H, Gillette JR. Studies on the destruction of adrenal and testicular cytochrome P-450 by spironolactone. Requirement for the 7alpha-thio group and evidence for the loss of the heme and apoproteins of cytochrome P-450.  J Biol Chem. 1979;  254 1726-1733
  • 50 Kossor DC, Kominami S, Takemori S, Colby HD. Role of the steroid 17 alpha-hydroxylase in spironolactone-mediated destruction of adrenal cytochrome P-450.  Mol Pharmacol. 1991;  40 321-325
  • 51 Colby HD, O’Donnell JP, Flowers NL, Kossor DC, Johnson PB, Levitt M. Relationship between covalent binding to microsomal protein and the destruction of adrenal cytochrome P-450 by spironolactone.  Toxicology. 1991;  67 143-154
  • 52 Takamura N, Maruyama T, Ahmed S, Suenaga A, Otagiri M. Interactions of aldosterone antagonist diuretics with human serum proteins.  Pharm Res. 1997;  14 522-526
  • 53 Lasaridis AN, Tourkantonis A, Spanos P, Apostolopoulou K, Pharmakiotis A. The effects of canrenoate K on corticosteroid biosynthesis in nephrectomized dogs.  J Steroid Biochem. 1984;  20 923-929
  • 54 Cheng SC, Suzuki K, Sadee W, Harding BW. Effects of spironolactone, canrenone and canrenoate-K on cytochrome P450, and 11beta- and 18-hydroxylation in bovine and human adrenal cortical mitochondria.  Endocrinology. 1976;  99 1097-1106
  • 55 Stripp B, Taylor AA, Bartter FC, Gillette JR, Loriaux DL, Easley R, Menard RH. Effect of spironolactone on sex hormones in man.  J Clin Endocrinol Metab. 1975;  41 777-781
  • 56 Cook CS, Berry LM, Bible RH, Hribar JD, Hajdu E, Liu NW. Pharmacokinetics and metabolism of [14C]eplerenone after oral administration to humans.  Drug Metab Dispos. 2003;  31 1448-1455

Correspondence

W. E. RaineyPhD 

Department of Physiology

Medical College of Georgia

1120 15th Street

Augusta

30912 GA

USA

Phone: +1/706/721 76 65

Fax: +1/706/721 83 60

Email: wrainey@mcg.edu

    >