Synthesis 2008(21): 3443-3446  
DOI: 10.1055/s-0028-1083190
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Facile Conversion of Dithioesters into Carboxylic Acids or Esters Using Alkaline Hydrogen Peroxide

Fabienne Grellepois*, Charles Portella
CNRS UMR 6229, UFR des Sciences Exactes et Naturelles, Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France
Fax: +33(3)26913166; e-Mail: fabienne.grellepois@univ-reims.fr;
Further Information

Publication History

Received 30 May 2008
Publication Date:
16 October 2008 (online)

Abstract

Simple, mild, and environmentally friendly procedures for the direct conversion of dithioesters into either carboxylic acids or esters using hydrogen peroxide under alkaline conditions are described.

    References

  • 1 For a review on the conversion of C=S into C=O, see: Corsaco A. Pistara V. Tetrahedron  1998,  54:  15027 
  • For reviews on the preparation of dithioesters, see:
  • 2a Ramadas SR. Srinisavan PS. Ramachandran J. Sastry VVSK. Synthesis  1983,  605 
  • 2b Metzner P. Thuillier A. Sulfur Reagents in Organic Synthesis   Academic Press; London: 1994. 
  • 2c See also: Abrunhosa I. Gulea M. Masson S. Synthesis  2004,  928 ; and references cited therein
  • 3 Labiad B. Villemin D. Chem. Ind. (London)  1988,  434 
  • 4 Jorgensen KA. El-Wassimy MTM. Lawesson SO. Tetrahedron  1983,  39:  469 
  • 5 Rees CW. Rakitin OA. Marcos CF. Torroba T. J. Org. Chem.  1999,  64:  4376 
  • 6 Ito K. Nakajima K. J. Heterocycl. Chem.  1988,  25:  511 
  • 7 Ley SV. Meerholz CA. Barton DHR. Tetrahedron Lett.  1980,  21:  1785 
  • 8 Alper H. Kwiatkowska C. Petrignani JF. Sibtain F. Tetrahedron Lett.  1986,  27:  5449 
  • 9 Ishida M. Kaga K. Sato H. Kato S. Bull. Chem. Soc. Jpn.  1986,  59:  1403 
  • 10a Takahashi H. Oshima K. Yamamoto H. Nozaki H. J. Am. Chem. Soc.  1973,  95:  5803 
  • 10b Beslin P. Vallée Y. Tetrahedron  1985,  41:  2691 
  • 10c Meyers AI. Walkup RD. Tetrahedron  1985,  41:  5089 
  • 10d Beslin P. Perrio S. Tetrahedron  1991,  47:  6275 
  • 11a Berrada S. Desert S. Metzner P. Tetrahedron  1988,  44:  3575 
  • 11b Kpegba K. Metzner P. Rakotonirina R. Tetrahedron  1989,  45:  2041 
  • 11c Jung MF. Parker MH. J. Org. Chem.  1997,  62:  7094 
  • 11d Sibi MP. Rheault TR. Chandramouli SV. Jasperse CP. J. Am. Chem. Soc.  2002,  124:  2924 
  • 11e Satoh T. Miura M. Sakai K. Yokoyama Y. Tetrahedron  2006,  62:  4253 
  • 11f Spivey AC. Martin LJ. Grainger DM. Ortner J. White AJP. Org. Lett.  2006,  8:  3891 
  • 12 Derwing C. Frank H. Hoppe D. Eur. J. Org. Chem.  1999,  3519 
  • 13 El-Wassimy MTM. Jorgensen KA. Lawesson SO. Chem. Scr.  1984,  24:  80 
  • 14 Grellepois F. Timoshenko VM. Shermolovich YG. Portella C. Org. Lett.  2006,  8:  4323 
  • 15 For α-CF3 carboxylic acids, see for example: Hiyama T. Organofluorine Compounds: Chemistry and Applications   Springer Verlag; Berlin: 2000. 
  • 16a Strukul G. Catalytic Oxidations with Hydrogen Peroxide as Oxidant   Kluwer Academic; Dordrecht: 1992. 
  • 16b Burke SD. Danheiser RL. Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Agents   Wiley; Chichester: 1999.  p.174-178  
  • For the oxidation of thiols into disulfides with alkaline hydrogen peroxide, see:
  • 17a Price CC. Stacy GW. Org. Synth., Coll. Vol. III   John Wiley & Sons; London: 1955.  p.86 
  • 17b Pascal I. Tarbell DS. J. Am. Chem. Soc.  1957,  79:  6015 
  • 17c Hesse JE. Truby FK. Chem. Ind. (London)  1965,  680 
  • 20 For a study of the mechanism of the conversion of thioamides into amides with hydrogen peroxide at various pH see: Cashman JR. Hanzlik RP. J. Org. Chem.  1982,  47:  4645 
  • 21 Zwanenburg B. Thys L. Strating J. Tetrahedron Lett.  1967,  8:  3453 
  • 22 Oxathiiranes have already been postulated as intermediates for the rearrangement of dithioesters into dithioperoxyesters, see: Metzner P. Pham TN. J. Chem. Soc., Chem. Commun.  1988,  390 
  • 23 Snyder JP. J. Am. Chem. Soc.  1974,  96:  5005 
  • 24 Hu NX. Aso Y. Otsubo T. Ogura F. Tetrahedron Lett.  1986,  27:  6099 
  • 25 Mohammadpoor-Baltork I. Memarian HR. Bahrami K. Monatsh. Chem.  2004,  135:  411 
  • 26 Pirkle WH. Sowin TJ. J. Org. Chem.  1987,  52:  3011 
  • 27 Narasimhamurthy N. Samuelson AG. Tetrahedron Lett.  1986,  27:  3911 
  • 28 El-Wassimy MTM. Jorgensen KA. Lawesson SO. Tetrahedron  1983,  39:  1729 
  • 29 Lemarie M. Pham TN. Metzner P. Tetrahedron Lett.  1991,  32:  7411 
  • 30 Mohammadpoor-Baltork I. Sadeghi MM. Esmayilpour K. Synth. Commun.  2003,  33:  953 
  • 33a Cazes B. Julia S. Tetrahedron Lett.  1978,  19:  4065 
  • 33b Metzner P. Thuillier A. Sulfur Reagents in Organic Synthesis   Academic Press; London: 1994.  p.41 
18

Aqueous hydrogen peroxide could be replaced by solid urea-hydrogen peroxide adduct (UHP). Under these conditions, acid 4 was isolated in 88% yield.

19

All aliquots were acidified before analysis by GC/MS. Intermediates were identified by comparison of analytical data (t R, MS peaks) with those of authentic samples of dithioester 3, acid 4, ester 5, thiolester 6, thionoester 7, sulfine 8, and dibenzyl disulfide.

31

Despite the fact that only 1 equiv of base is required, using a larger amount reduced the reaction time (1 h instead of 15 h).

32

Aqueous hydrogen peroxide could be replaced by solid urea-hydrogen peroxide adduct (UHP). Under these conditions, ester 5 was isolated in 50% yield.