Subscribe to RSS
DOI: 10.1055/a-2771-8166
Current and Future Strategies versus Tradeoffs in Maximizing the Treatment Response in Rectal Cancer: A Focus on MSI-H Disease
Authors
Abstract
Rectal cancer management is rapidly evolving with advances in molecular characterization, systemic therapy, radiotherapy, and immunotherapy. In mismatch repair–deficient (dMMR) or microsatellite instability–high (MSI-H) rectal cancer, PD-1 blockade has produced unprecedented rates of complete clinical response, enabling organ-preserving strategies without chemoradiation or surgery. Circulating tumor DNA (ctDNA) offers additional opportunities to refine surveillance and guide treatment de-escalation. Tradeoffs between oncologic safety, organ preservation, toxicity, and quality of life remain central to treatment decisions. This article reviews current and future strategies, emphasizing the balance between maximizing tumor response and minimizing treatment burden, with distinct considerations for MSI-H rectal cancer.
Keywords
rectal cancer - mismatch repair deficiency - total neoadjuvant therapy - immunotherapy - organ preservation - circulating tumor DNAPublication History
Article published online:
11 February 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 de Neree Tot Babberich MPM, Vermeer NCA, Wouters MWJM. et al; Dutch ColoRectal Audit. Postoperative outcomes of screen-detected vs non-screen-detected colorectal cancer in the Netherlands. JAMA Surg 2018; 153 (12) e183567
- 2 Maas M, Nelemans PJ, Valentini V. et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 2010; 11 (09) 835-844
- 3 Smith JD, Ruby JA, Goodman KA. et al. Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg 2012; 256 (06) 965-972
- 4 Sargent DJ, Marsoni S, Monges G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010; 28 (20) 3219-3226 . Erratum in: J Clin Oncol. 2010 Oct 20;28(30):4664
- 5 André T, Shiu KK, Kim TW. et al; KEYNOTE-177 Investigators. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 2020; 383 (23) 2207-2218
- 6 Cercek A, Lumish M, Sinopoli J. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med 2022; 386 (25) 2363-2376
- 7 Fokas E, Schlenska-Lange A, Polat B. et al; German Rectal Cancer Study Group. Chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for patients with locally advanced rectal cancer: long-term results of the CAO/ARO/AIO-12 randomized clinical trial. JAMA Oncol 2022; 8 (01) e215445
- 8 Conroy T, Castan F, Etienne PL. et al. Total neoadjuvant therapy with mFOLFIRINOX versus preoperative chemoradiotherapy in patients with locally advanced rectal cancer: long-term results of the UNICANCER-PRODIGE 23 trial. Ann Oncol 2024; 35 (10) 873-881
- 9 Murahashi S, Akiyoshi T, Sano T. et al. Serial circulating tumour DNA analysis for locally advanced rectal cancer treated with preoperative therapy: prediction of pathological response and postoperative recurrence. Br J Cancer 2020; 123 (05) 803-810
- 10 Lei Y, Li X, Huang Q, Zheng X, Liu M. Progress and challenges of predictive biomarkers for immune checkpoint blockade. Front Oncol 2021; 11: 617335
- 11 Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487 (7407) 330-337
- 12 Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 2001; 91 (12) 2417-2422
- 13 Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010; 138 (06) 2073-2087.e3
- 14 Nádorvári ML, Kenessey I, Kiss A. et al. Comparison of standard mismatch repair deficiency and microsatellite instability tests in a large cancer series. J Transl Med 2024; 22 (01) 150
- 15 Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol 2015; 16 (07) 30
- 16 Hampel H, Frankel WL, Martin E. et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005; 352 (18) 1851-1860
- 17 Le DT, Uram JN, Wang H. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372 (26) 2509-2520
- 18 Campbell BB, Light N, Fabrizio D. et al. Comprehensive analysis of hypermutation in human cancer. Cell 2017; 171 (05) 1042-1056.e10
- 19 Domingo E, Freeman-Mills L, Rayner E. et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2022; 7 (05) 455-466
- 20 McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2019; 20 (02) e77-e91
- 21 McQuade JL, Ologun GO, Arora R, Wargo JA. Gut microbiome modulation via fecal microbiota transplant to augment immunotherapy in patients with melanoma or other cancers. Curr Oncol Rep 2020; 22 (07) 74
- 22 Khan MAW, Ologun G, Arora R, McQuade JL, Wargo JA. Gut microbiome modulates response to cancer immunotherapy. Dig Dis Sci 2020; 65 (03) 885-896
- 23 Baruch EN, Youngster I, Ben-Betzalel G. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021; 371 (6529) 602-609
- 24 Davar D, Dzutsev AK, McCulloch JA. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021; 371 (6529) 595-602
- 25 Cercek A, Foote MB, Rousseau B. et al. Nonoperative management of mismatch repair-deficient tumors. N Engl J Med 2025; 392 (23) 2297-2308
- 26 Chalabi M, Verschoor YL, Tan PB. et al. Neoadjuvant immunotherapy in locally advanced mismatch repair-deficient colon cancer. N Engl J Med 2024; 390 (21) 1949-1958
- 27 André T, Shiu KK, Kim TW. et al. Pembrolizumab versus chemotherapy in microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer: 5-year follow-up from the randomized phase III KEYNOTE-177 study. Ann Oncol 2025; 36 (03) 277-284
- 28 Lenz HJ, Van Cutsem E, Luisa Limon M. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol 2022; 40 (02) 161-170
- 29 Ludford K, Ho WJ, Thomas JV. et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors. J Clin Oncol 2023; 41 (12) 2181-2190
- 30 Overman MJ, Lonardi S, Wong KYM. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. J Clin Oncol 2018; 36 (08) 773-779
- 31 Diehl F, Schmidt K, Choti MA. et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 (09) 985-990
- 32 Wan JCM, Massie C, Garcia-Corbacho J. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17 (04) 223-238
- 33 Reinert T, Henriksen TV, Christensen E. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with colorectal cancer. Sci Transl Med 2019; 11 (504) eaax7392
- 34 Parikh AR, Van Seventer EE, Siravegna G. et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in colorectal cancer patients. Clin Cancer Res 2021; 27 (20) 5586-5594
- 35 Taniguchi H, Nakamura Y, Kotani D. et al. CIRCULATE-Japan: a platform for circulating tumor DNA–guided treatment of colorectal cancer. Cancer Sci 2021; 112 (07) 2930-2937
- 36 Kotani D, Oki E, Nakamura Y. et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat Med 2023; 29 (01) 127-134
- 37 Malla M, Loree JM, Kasi PM, Parikh AR. Using circulating tumor DNA in colorectal cancer: current and evolving practices. J Clin Oncol 2022; 40 (24) 2846-2857
- 38 Tie J, Cohen JD, Wang Y. et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage II colon cancer (DYNAMIC study, 5-year update). N Engl J Med 2022; 386 (24) 2261-2272
- 39 Dattani M, Heald RJ, Goussous G. et al. Oncological and survival outcomes in watch and wait patients with a clinical complete response after neoadjuvant chemoradiotherapy for rectal cancer: a systematic review and pooled analysis. Ann Surg 2018; 268 (06) 955-967
- 40 Kong JC, Guerra GR, Warrier SK, Ramsay RG, Heriot AG. Outcome and salvage surgery following “watch and wait” for rectal cancer after neoadjuvant therapy: a systematic review. Dis Colon Rectum 2017; 60 (03) 335-345
- 41 Nasir I, Fernandez L, Vieira P. et al. Salvage surgery for local regrowths in watch & wait—are we harming our patients by deferring the surgery?. Eur J Surg Oncol 2019; 45 (09) 1559-1566
- 42 Fernandez LM, Figueiredo NL, Habr-Gama A. et al. Salvage surgery with organ preservation for patients with local regrowth after watch and wait: is it still possible?. Dis Colon Rectum 2020; 63 (08) 1053-1062
- 43 Mathew R, Toh EL. Salvage surgery following organ preservation with local regrowth after watch and wait: picture still unclear. Dis Colon Rectum 2021; 64 (05) e96-e97
- 44 Lin W, Wee IJY, Seow-En I, Chok AY, Tan EK. Survival outcomes of salvage surgery in the watch-and-wait approach for rectal cancer with clinical complete response after neoadjuvant chemoradiotherapy: a systematic review and meta-analysis. Ann Coloproctol 2023; 39 (06) 447-456
- 45 Hou Z, Liao L, Xiao W. et al. Neoadjuvant chemoradiotherapy plus sintilimab in pMMR/MSS rectal cancer patients with PD-L1 TPS ≥1% or CPS ≥1: an open-label, prospective, phase II study. NPJ Precis Oncol 2025; 9 (01) 237
- 46 Benson III AB, Venook AP, Adam M. et al. Colon cancer, version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2024; 22 (2D): e240029
- 47 Chi Y, Shu Y, Ba Y. et al. Anlotinib monotherapy for refractory metastatic colorectal cancer: a double-blinded, placebo-controlled, randomized phase III trial (ALTER0703). Oncologist 2021; 26 (10) e1693-e170
- 48 Meng X, Lu Z, Mi F. et al. Research hotspots and emerging trends in targeted therapy for colorectal cancer: a bibliometric analysis (2000–2023). Discov Oncol 2025; 16: 789
- 49 Zhou L, Huang X, Shi J. et al. Decoding colorectal cancer targeted therapy: a bibliometric journey of the last decade (2015–2024). Discov Oncol 2025; 16 (01) 442
- 50 de Gooyer PGM. et al. Radiotherapy, atezolizumab, and bevacizumab to increase organ preservation in rectal cancer: the TARZAN study. Ann Oncol 2024; 35 (suppl): S106
- 51 ClinicalTrials.gov. NCT04621370. Retifanlimab in dMMR/MSI-H locally advanced rectal cancer. Accessed January 20, 2026 at: https://www.clinicaltrials.gov/study/NCT06149481
- 52 Morris VK. et al. Phase II results of circulating tumor DNA as a predictive biomarker in adjuvant chemotherapy in patients with stage II colon cancer: NRG-GI005 (COBRA) phase II/III study. J Clin Oncol 2024; 42 (3 suppl): 5
- 53 Razavi P, Li BT, Brown DN. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med 2019; 25 (12) 1928-1937
- 54 Chan HT, Chin YM, Nakamura Y, Low SK. Clonal hematopoiesis in liquid biopsy: From biological noise to valuable clinical implications. Cancers (Basel) 2020; 12 (08) 2277
- 55 Chalabi M, Fanchi LF, Dijkstra KK. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med 2020; 26 (04) 566-576
