RSS-Feed abonnieren
DOI: 10.1055/a-2730-8997
Artificial Intelligence and Multiple Sclerosis: Past, Present, and Future
Autor*innen
Abstract
Artificial intelligence (AI) in multiple sclerosis (MS) is an area of growing importance of growing importance. We review the historical context, current applications, and future prospects of AI and machine learning (ML) in MS. The review highlights AI's potential to address critical challenges in MS management, including early and accurate diagnosis, individualized treatment strategies, prognostication, and efficient patient monitoring. By leveraging large datasets and high-dimensional data, AI promises profound insights and augments clinical decision-making processes. Additionally, the manuscript covers potential limitations and challenges facing AI use in MS clinical practice and research.
Declaration of GenAI Use
Portions of [Fig. 1] were generated using generative artificial intelligence tool, Google Gemini.
Publikationsverlauf
Eingereicht: 25. Juli 2025
Angenommen: 21. Oktober 2025
Artikel online veröffentlicht:
10. November 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 2013; 333 (1-2): 1-4
- 2 Walton C, King R, Rechtman L. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler 2020; 26 (14) 1816-1821
- 3 Adelman G, Rane SG, Villa KF. The cost burden of multiple sclerosis in the United States: a systematic review of the literature. J Med Econ 2013; 16 (05) 639-647
- 4 Bebo B, Cintina I, LaRocca N. et al. The economic burden of multiple sclerosis in the United States: estimate of direct and indirect costs. Neurology 2022; 98 (18) e1810-e1817
- 5 Cerqueira JJ, Compston DAS, Geraldes R. et al. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?. J Neurol Neurosurg Psychiatry 2018; 89 (08) 844-850
- 6 Solomon AJ, Ascherio A. Early diagnosis of multiple sclerosis: further evidence for missed opportunity. Neurology 2021; 96 (24) 1111-1112
- 7 Schwenkenbecher P, Wurster U, Konen FF. et al. Impact of the McDonald criteria 2017 on early diagnosis of relapsing-remitting multiple sclerosis. Front Neurol 2019; 10: 188
- 8 Solomon AJ, Naismith RT, Cross AH. Misdiagnosis of multiple sclerosis: impact of the 2017 McDonald criteria on clinical practice. Neurology 2019; 92 (01) 26-33
- 9 Solomon AJ, Bourdette DN, Cross AH. et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 2016; 87 (13) 1393-1399
- 10 Kaisey M, Solomon AJ. Multiple sclerosis diagnostic delay and misdiagnosis. Neurol Clin 2024; 42 (01) 1-13
- 11 Solomon AJ, Corboy JR. The tension between early diagnosis and misdiagnosis of multiple sclerosis. Nat Rev Neurol 2017; 13 (09) 567-572
- 12 Kaisey M, Solomon AJ, Luu M, Giesser BS, Sicotte NL. Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers. Mult Scler Relat Disord 2019; 30: 51-56
- 13 Midaglia L, Sastre-Garriga J, Pappolla A. et al. The frequency and characteristics of MS misdiagnosis in patients referred to the multiple sclerosis centre of Catalonia. Mult Scler 2021; 27 (06) 913-921
- 14 AI vs Machine Learning: How Do They Differ? Google. Accessed at: https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
- 15 What is Machine Learning? Google. Accessed at: https://developers.google.com/machine-learning/intro-to-ml/what-is-ml
- 16 Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc 2020; 92 (04) 807-812
- 17 Tekkeşin Aİ, Chen JH. Artificial intelligence in medicine: past, present, and future. Anatol J Cardiol 2019; 22 (Suppl. 02) 8-9
- 18 Amin M, Martínez-Heras E, Ontaneda D, Prados Carrasco F. Artificial intelligence and multiple sclerosis. Curr Neurol Neurosci Rep 2024; 24 (08) 233-243
- 19 Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the '90s?. Artif Intell Med 1993; 5 (02) 93-106
- 20 Raff U, Vargas PF, Rojas GM, Scherzinger AL, Simon JH. Quantitation of T2 lesion load in multiple sclerosis with magnetic resonance imaging: a pilot study of a probabilistic neural network approach. Acad Radiol 1997; 4 (06) 431-437
- 21 Raff U, Newman FD. Lesion detection in radiologic images using an autoassociative paradigm: preliminary results. Med Phys 1990; 17 (05) 926-928
- 22 Slater JD, Wu FY, Honig LS, Ramsay RE, Morgan R. Neural network analysis of the P300 event-related potential in multiple sclerosis. Electroencephalogr Clin Neurophysiol 1994; 90 (02) 114-122
- 23 Filippi M, Horsfield MA, Bressi S. et al. Intra- and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis. A comparison of techniques. Brain 1995; 118 (Pt 6): 1593-1600
- 24 Mitchell R, Karlik SJ, Lee DH, Fenster A. Automated detection and quantification of multiple sclerosis lesions in MR volumes of the brain. In Medical Imaging VI: Image Processing. vol. 1652 99–106. SPIE; 1992
- 25 Fisher E, Cothren Jr RM, Tkach JA, Masaryk TJ, Cornhill JF. Knowledge-based 3D segmentation of the brain in MR images for quantitative multiple sclerosis lesion tracking. In Medical Imaging 1997: Image Processing. vol. 3034 19–25 (SPIE, 1997)
- 26 Fisher E, Rudick RA, Cutter G. et al. Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler 2000; 6 (06) 373-377
- 27 Mack CA. Fifty years of Moore's law. IEEE Trans Semicond Manuf 2011; 24: 202-207
- 28 Wattjes MP, Ciccarelli O, Reich DS. et al; Magnetic Resonance Imaging in Multiple Sclerosis study group, Consortium of Multiple Sclerosis Centres, North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20 (08) 653-670
- 29 Harrison DM, Sati P, Klawiter EC. et al. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6 (05) fcae359
- 30 Shoeibi A, Khodatars M, Jafari M. et al. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. Comput Biol Med 2021; 136: 104697
- 31 Brosch T, Tang LY, Youngjin Yoo, Li DK, Traboulsee A, Tam R. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 2016; 35 (05) 1229-1239
- 32 Horsfield MA, Sala S, Neema M. et al. Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 2010; 50 (02) 446-455
- 33 Goebl P, Wingrove J, Abdelmannan O. et al. Enabling new insights from old scans by repurposing clinical MRI archives for multiple sclerosis research. Nat Commun 2025; 16 (01) 3149
- 34 La Rosa F, Abdulkadir A, Fartaria MJ. et al. Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE. Neuroimage Clin 2020; 27: 102335
- 35 Danelakis A, Theoharis T, Verganelakis DA. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 2018; 70: 83-100
- 36 Tran P, Thoprakarn U, Gourieux E. et al; Alzheimer's Disease Neuroimaging Initiatives, for the Frontotemporal Lobar Degeneration Neuroimaging Initiative. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both multiple sclerosis and elderly subjects. Neuroimage Clin 2022; 33: 102940
- 37 Wang X, Wang X, Yan Z. et al. Enhanced choroid plexus segmentation with 3D UX-Net and its association with disease progression in multiple sclerosis. Mult Scler Relat Disord 2024; 88: 105750
- 38 Su JH, Thomas FT, Kasoff WS. et al. Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 2019; 194: 272-282
- 39 Gaj S, Ontaneda D, Nakamura K. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI. PLoS One 2021; 16 (09) e0255939
- 40 Baldassari LE, Nakamura K, Moss BP. et al. Technology-enabled comprehensive characterization of multiple sclerosis in clinical practice. Mult Scler Relat Disord 2020; 38: 101525
- 41 Petzold A, Balcer LJ, Calabresi PA. et al; ERN-EYE IMSVISUAL. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; 16 (10) 797-812
- 42 Yoon J, Gong E, Chatnuntawech I. et al. Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 2018; 179: 199-206
- 43 Bouman PM, Strijbis VI, Jonkman LE, Hulst HE, Geurts JJ, Steenwijk MD. Artificial double inversion recovery images for (juxta)cortical lesion visualization in multiple sclerosis. Mult Scler 2022; 28 (04) 541-549
- 44 Finck T, Li H, Grundl L. et al. Deep-learning generated synthetic double inversion recovery images improve multiple sclerosis lesion detection. Invest Radiol 2020; 55 (05) 318-323
- 45 Liu H, Xiang QS, Tam R. et al. Myelin water imaging data analysis in less than one minute. Neuroimage 2020; 210: 116551
- 46 Duan C, Xiong Y, Cheng K. et al. Accelerating susceptibility-weighted imaging with deep learning by complex-valued convolutional neural network (ComplexNet): validation in clinical brain imaging. Eur Radiol 2022; 32 (08) 5679-5687
- 47 Mani A, Santini T, Puppala R. et al. Applying deep learning to accelerated clinical brain magnetic resonance imaging for multiple sclerosis. Front Neurol 2021; 12: 685276
- 48 Sieber V, Rusche T, Yang S. et al. Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time. Neuroradiology 2024; 66 (12) 2171-2176
- 49 Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD, Gabr RE. Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 2020; 294 (02) 398-404
- 50 Lucas A, Arnold TC, Okar SV. et al. Multi-contrast high-field quality image synthesis for portable low-field MRI using generative adversarial networks and paired data. medRxiv [Preprint] 2023;
- 51 Eshaghzadeh Torbati M, Minhas DS, Ahmad G. et al. A multi-scanner neuroimaging data harmonization using RAVEL and ComBat. Neuroimage 2021; 245: 118703
- 52 Torbati ME, Minhas DS, Laymon CM. et al. MISPEL: a supervised deep learning harmonization method for multi-scanner neuroimaging data. Med Image Anal 2023; 89: 102926
- 53 Dewey BE, Zhao C, Reinhold JC. et al. DeepHarmony: a deep learning approach to contrast harmonization across scanner changes. Magn Reson Imaging 2019; 64: 160-170
- 54 Amin M, Nakamura K, Ontaneda D. Differentiating multiple sclerosis from non-specific white matter changes using a convolutional neural network image classification model. Mult Scler Relat Disord 2024; 82: 105420
- 55 Zhang H, Alberts E, Pongratz V. et al. Predicting conversion from clinically isolated syndrome to multiple sclerosis—an imaging-based machine learning approach. Neuroimage Clin 2019; 21: 101593
- 56 Ortiz M, Mallen V, Boquete L. et al. Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence. Mult Scler Relat Disord 2023; 74: 104725
- 57 Dongil-Moreno FJ, Ortiz M, Pueyo A. et al. Diagnosis of multiple sclerosis using optical coherence tomography supported by explainable artificial intelligence. Eye (Lond) 2024; 38 (08) 1502-1508
- 58 Rocca MA, Anzalone N, Storelli L. et al. Deep learning on conventional magnetic resonance imaging improves the diagnosis of multiple sclerosis mimics. Invest Radiol 2021; 56 (04) 252-260
- 59 Farabi Maleki S, Yousefi M, Afshar S. et al. Artificial intelligence for multiple sclerosis management using retinal images: pearl, peaks, and pitfalls. Semin Ophthalmol 2024; 39 (04) 271-288
- 60 Maggi P, Absinta M, Grammatico M. et al. Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 2018; 83 (02) 283-294
- 61 Ontaneda D, Cohen JA, Sati P. Incorporating the central vein sign into the diagnostic criteria for multiple sclerosis. JAMA Neurol 2023; 80 (07) 657-658
- 62 Maggi P, Sati P, Nair G. et al. Paramagnetic rim lesions are specific to multiple sclerosis: an international multicenter 3T MRI study. Ann Neurol 2020; 88 (05) 1034-1042
- 63 Solomon AJ, Watts R, Ontaneda D, Absinta M, Sati P, Reich DS. Diagnostic performance of central vein sign for multiple sclerosis with a simplified three-lesion algorithm. Mult Scler 2018; 24 (06) 750-757
- 64 Maggi P, Fartaria MJ, Jorge J. et al. CVSnet: a machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR Biomed 2020; 33 (05) e4283
- 65 Lou C, Sati P, Absinta M. et al. Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging. Neuroimage Clin 2021; 32: 102796
- 66 Dworkin JD, Sati P, Solomon A. et al. Automated integration of multimodal MRI for the probabilistic detection of the central vein sign in white matter lesions. AJNR Am J Neuroradiol 2018; 39 (10) 1806-1813
- 67 Klineova S, Lublin FD. Clinical course of multiple sclerosis. Cold Spring Harb Perspect Med 2018; 8 (09) a028928
- 68 Lublin FD, Reingold SC, Cohen JA. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83 (03) 278-286
- 69 Pitt D, Lo CH, Gauthier SA. et al. Toward precision phenotyping of multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2022; 9 (06) e200025
- 70 Pontillo G, Penna S, Cocozza S. et al. Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach. Eur Radiol 2022; 32 (08) 5382-5391
- 71 Eshaghi A, Young AL, Wijeratne PA. et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun 2021; 12 (01) 2078
- 72 Jiang X, Shen C, Caba B. et al. Assessing the utility of magnetic resonance imaging-based “SuStaIn” disease subtyping for precision medicine in relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler Relat Disord 2023; 77: 104869
- 73 Al-Iedani O, Lea S, Alshehri A. et al. Multi-modal neuroimaging signatures predict cognitive decline in multiple sclerosis: a 5-year longitudinal study. Mult Scler Relat Disord 2024; 81: 105379
- 74 Storelli L, Azzimonti M, Gueye M. et al. A deep learning approach to predicting disease progression in multiple sclerosis using magnetic resonance imaging. Invest Radiol 2022; 57 (07) 423-432
- 75 Brier MR, Li Z, Ly M. et al. “Brain age” predicts disability accumulation in multiple sclerosis. Ann Clin Transl Neurol 2023; 10 (06) 990-1001
- 76 Swetlik C, Bove R, McGinley M. Clinical and research applications of the electronic medical record in multiple sclerosis: a narrative review of current uses and future applications. Int J MS Care 2022; 24 (06) 287-294
- 77 Makhani N, Tremlett H. The multiple sclerosis prodrome. Nat Rev Neurol 2021; 17 (08) 515-521
- 78 Ajdacic-Gross V, Steinemann N, Horváth G. et al. Onset symptom clusters in multiple sclerosis: characteristics, comorbidities, and risk factors. Front Neurol 2021; 12: 693440
- 79 Felix C, Johnston JD, Owen K. et al. Explainable machine learning for predicting conversion to neurological disease: results from 52,939 medical records. Digit Health 2024; 10: 20 552076241249286
- 80 Nelson CA, Bove R, Butte AJ, Baranzini SE. Embedding electronic health records onto a knowledge network recognizes prodromal features of multiple sclerosis and predicts diagnosis. J Am Med Inform Assoc 2022; 29 (03) 424-434
- 81 Chase HS, Mitrani LR, Lu GG, Fulgieri DJ. Early recognition of multiple sclerosis using natural language processing of the electronic health record. BMC Med Inform Decis Mak 2017; 17 (01) 24
- 82 Maida E, Moccia M, Palladino R. et al; Digital Technologies, Web, Social Media Study Group of the Italian Society of Neurology (SIN). ChatGPT vs. neurologists: a cross-sectional study investigating preference, satisfaction ratings and perceived empathy in responses among people living with multiple sclerosis. J Neurol 2024; 271 (07) 4057-4066
- 83 Inojosa H, Voigt I, Wenk J. et al. Integrating large language models in care, research, and education in multiple sclerosis management. Mult Scler 2024; 30 (11-12): 1392-1401
- 84 Inojosa H, Gilbert S, Kather JN, Proschmann U, Akgün K, Ziemssen T. Can ChatGPT explain it? Use of artificial intelligence in multiple sclerosis communication. Neurol Res Pract 2023; 5 (01) 48
- 85 Poole S, Sisodia N, Koshal K. et al; UCSF Multiple Sclerosis and Neuroinflammation Center clinicians. Detecting new lesions using a large language model: applications in real-world multiple sclerosis datasets. Ann Neurol 2025; 98 (02) 308-316
- 86 Zakharov A. et al. Natural Language Processing for Analyzing Neurological Status in Patients with Multiple Sclerosis. In 2024 Sixth International Conference Neurotechnologies and Neurointerfaces (CNN) 261–264. IEEE; 2024
- 87 Patel MA, Villalobos F, Shan K. et al. Generative artificial intelligence versus clinicians: Who diagnoses multiple sclerosis faster and with greater accuracy?. Mult Scler Relat Disord 2024; 90: 105791
- 88 Barrit S, Torcida N, Mazeraud A. et al. Specialized large language model outperforms neurologists at complex diagnosis in blinded case-based evaluation. Brain Sci 2025; 15 (04) 347
- 89 Mataraso SJ, Espinosa CA, Seong D. et al. A machine learning approach to leveraging electronic health records for enhanced omics analysis. Nat Mach Intell 2025; 7 (02) 293-306
- 90 Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 2017; 13 (01) 25-36
- 91 International Multiple Sclerosis Genetics Consortium, MultipleMS Consortium. Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 2023; 619 (7969): 323-331
- 92 Ghafouri-Fard S, Taheri M, Omrani MD, Daaee A, Mohammad-Rahimi H. Application of artificial neural network for prediction of risk of multiple sclerosis based on single nucleotide polymorphism genotypes. J Mol Neurosci 2020; 70 (07) 1081-1087
- 93 Arrambide G, Comabella M, Tur C. Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis. Front Immunol 2024; 15: 1459502
- 94 Askin S, Burkhalter D, Calado G, El Dakrouni S. Artificial intelligence applied to clinical trials: opportunities and challenges. Health Technol (Berl) 2023; 13 (02) 203-213
- 95 Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci 2019; 40 (08) 577-591
- 96 Aliper A, Kudrin R, Polykovskiy D. et al. Prediction of clinical trials outcomes based on target choice and clinical trial design with multi-modal artificial intelligence. Clin Pharmacol Ther 2023; 114 (05) 972-980
- 97 Eckardt J-N, Hahn W, Röllig C. et al. Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence. NPJ Digit Med 2024; 7 (01) 76
- 98 Arnal Segura M, Bini G, Krithara A, Paliouras G, Tartaglia GG. Machine learning methods for classifying multiple sclerosis and Alzheimer's disease using genomic data. Int J Mol Sci 2025; 26 (05) 2085
- 99 Omrani M, Chiarelli RR, Acquaviva M. et al. Machine learning-driven diagnosis of multiple sclerosis from whole blood transcriptomics. Brain Behav Immun 2024; 121: 269-277
- 100 Gurevich M, Zilkha-Falb R, Sherman J. et al. Machine learning-based prediction of disease progression in primary progressive multiple sclerosis. Brain Commun 2025; 7 (01) fcae427
- 101 Schultz BG, Joukhadar Z, Nattala U. et al. Disease delineation for multiple sclerosis, Friedreich ataxia, and healthy controls using supervised machine learning on speech acoustics. IEEE Trans Neural Syst Rehabil Eng 2023; 31: 4278-4285
- 102 Friedrich MU, Relton S, Wong D, Alty J. Computer vision in clinical neurology: a review. JAMA Neurol 2025
- 103 Pontillo G, Prados F, Colman J. et al; MAGNIMS study group.. Disentangling neurodegeneration from aging in multiple sclerosis using deep learning: the brain-predicted disease duration gap. Neurology 2024; 103 (10) e209976
- 104 Buyukturkoglu K, Zeng D, Bharadwaj S. et al. Classifying multiple sclerosis patients on the basis of SDMT performance using machine learning. Mult Scler 2021; 27 (01) 107-116
- 105 van Dam M, Krijnen EA, Nauta IM. et al. Identifying and understanding cognitive profiles in multiple sclerosis: a role for visuospatial memory functioning. J Neurol 2024; 271 (05) 2195-2206
- 106 Zurawski J, Healy BC, Ratajska A, Barker L, Glanz BI, Houtchens M. Identification of a predominant cognitive phenotype in patients with multiple sclerosis. Eur J Neurol 2020; 27 (06) 1083-1088
- 107 Rimkus CM, Nucci MP, Avolio IB. et al. Atrophy patterns in patients with multiple sclerosis with cognitive impairment, fatigue, and mood disorders. Neurology 2024; 103 (12) e210080
- 108 Leavitt VM, Tosto G, Riley CS. Cognitive phenotypes in multiple sclerosis. J Neurol 2018; 265 (03) 562-566
- 109 Hasselmann H, Bellmann-Strobl J, Ricken R. et al. Characterizing the phenotype of multiple sclerosis-associated depression in comparison with idiopathic major depression. Mult Scler 2016; 22 (11) 1476-1484
- 110 Kratz AL, Whibley D, Alschuler KN. et al. Characterizing chronic pain phenotypes in multiple sclerosis: a nationwide survey study. Pain 2021; 162 (05) 1426-1433
- 111 Smuck M, Odonkor CA, Wilt JK, Schmidt N, Swiernik MA. The emerging clinical role of wearables: factors for successful implementation in healthcare. NPJ Digit Med 2021; 4 (01) 45
- 112 Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. NPJ Flex Electron 2021; 5: 9
- 113 Kappos L, Wolinsky JS, Giovannoni G. et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol 2020; 77 (09) 1132-1140
- 114 Dini M, Comi G, Leocani L. Digital remote monitoring of people with multiple sclerosis. Front Immunol 2025; 16: 1514813
- 115 Midaglia L, Mulero P, Montalban X. et al. Adherence and satisfaction of smartphone-and smartwatch-based remote active testing and passive monitoring in people with multiple sclerosis: nonrandomized interventional feasibility study. J Med Internet Res 2019; 21 (08) e14863
- 116 Khaligh-Razavi S-M, Sadeghi M, Khanbagi M, Kalafatis C, Nabavi SM. A self-administered, artificial intelligence (AI) platform for cognitive assessment in multiple sclerosis (MS). BMC Neurol 2020; 20 (01) 193
- 117 Block VJ, Waliman M, Xie Z. et al. Making every step count: minute-by-minute characterization of step counts augments remote activity monitoring in people with multiple sclerosis. Front Neurol 2022; 13: 860008
- 118 Chitnis T, Glanz BI, Gonzalez C. et al. Quantifying neurologic disease using biosensor measurements in-clinic and in free-living settings in multiple sclerosis. NPJ Digit Med 2019; 2: 123
- 119 Mosquera-Lopez C, Wan E, Shastry M. et al. Automated detection of real-world falls: modeled from people with multiple sclerosis. IEEE J Biomed Health Inform 2021; 25 (06) 1975-1984
- 120 Gashi S, Oldrati P, Moebus M. et al; PHRT Consortium. Modeling multiple sclerosis using mobile and wearable sensor data. NPJ Digit Med 2024; 7 (01) 64
- 121 Cen S, Gebregziabher M, Moazami S, Azevedo CJ, Pelletier D. Toward precision medicine using a “digital twin” approach: modeling the onset of disease-specific brain atrophy in individuals with multiple sclerosis. Sci Rep 2023; 13 (01) 16279
- 122 Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T. Digital twins for multiple sclerosis. Front Immunol 2021; 12: 669811
- 123 Palaniappan R, Siva R. Revolutionizing MS Rehabilitation with Digital Twins and Machine Learning: A Promising Path to Precision Medicine. In International Conference on Deep Sciences for Computing and Communications 182–192. Springer; 2023.
- 124 Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov 2024; 19 (01) 33-42
- 125 Schneider P, Walters WP, Plowright AT. et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2020; 19 (05) 353-364
- 126 Fang J, Zhang P, Wang Q. et al. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease. Alzheimers Res Ther 2022; 14 (01) 7
- 127 Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25 (03) 1315-1360
- 128 Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell 2020; 2: 573-584
- 129 Afzal HMR, Luo S, Ramadan S, Lechner-Scott J. The emerging role of artificial intelligence in multiple sclerosis imaging. Mult Scler 2022; 28 (06) 849-858
- 130 DeCamp M, Tilburt JC. Why we cannot trust artificial intelligence in medicine. Lancet Digit Health 2019; 1 (08) e390
- 131 Lockey S, Gillespie N, Holm D, Someh IA. A review of trust in artificial intelligence: Challenges, vulnerabilities and future directions. Proceedings of the 54th Hawaii International Conference on System Sciences, 2021
- 132 London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep 2019; 49 (01) 15-21
- 133 Warraich HJ, Tazbaz T, Califf RM. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA 2025; 333 (03) 241-247
- 134 Dankwa-Mullan I, Weeraratne D. Artificial intelligence and machine learning technologies in cancer care: addressing disparities, bias, and data diversity. Cancer Discov 2022; 12 (06) 1423-1427
- 135 Nazer LH, Zatarah R, Waldrip S. et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health 2023; 2 (06) e0000278
- 136 Paton C, Kobayashi S. An open science approach to artificial intelligence in healthcare. Yearb Med Inform 2019; 28 (01) 47-51
- 137 Li L, Fan Y, Tse M, Lin K-Y. A review of applications in federated learning. Comput Ind Eng 2020; 149: 106854
- 138 Yang J. et al. Poisoning medical knowledge using large language models. Nat Mach Intell 2024; 6: 1156-1168
- 139 Liu S, Yao Y, Jia J. et al. Rethinking machine unlearning for large language models. Nat Mach Intell 2025; 7: 181-194
- 140 Valencia L, Clèrigues A, Valverde S. et al. Evaluating the use of synthetic T1-w images in new T2 lesion detection in multiple sclerosis. Front Neurosci 2022; 16: 954662