Subscribe to RSS
DOI: 10.1055/a-2725-5313
Nutrition and Liver Disease
Authors

Abstract
The liver is a dynamic organ that plays a central role in metabolism and serves several critical functions in maintaining overall nutritional health, including helping maintain metabolic homeostasis by ensuring energy needs are met, eliminating waste products, and maintaining nutrient balance. Hepatic injury/liver dysfunction can compromise multiple metabolic processes and lead to complications such as malnutrition (deficiencies, excesses, or imbalances in a person's nutritional or caloric intake). The adverse clinical consequences of malnutrition vary widely from global malnutrition that can result in frailty, cachexia, and/or sarcopenia to micronutrient imbalances that can lead to individual functional alterations. Malnutrition is associated with a higher rate of complications including ascites, hepatic encephalopathy, and variceal bleeding, progressing to liver failure and poor survival outcomes. Malnutrition prior to liver transplantation is associated with worse postoperative quality of life, worse outcomes following decompensation events, and higher recurrence rates of hepatocellular carcinoma. Several treatment options are discussed.
Publication History
Received: 18 June 2025
Accepted: 16 October 2025
Article published online:
28 November 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Saunders J, Smith T. Malnutrition: causes and consequences. Clin Med (Lond) 2010; 10 (06) 624-627
- 2 Huisman EJ, Trip EJ, Siersema PD, van Hoek B, van Erpecum KJ. Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol 2011; 23 (11) 982-989
- 3 Montomoli J, Holland-Fischer P, Bianchi G. et al. Body composition changes after transjugular intrahepatic portosystemic shunt in patients with cirrhosis. World J Gastroenterol 2010; 16 (03) 348-353
- 4 Periyalwar P, Dasarathy S. Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis 2012; 16 (01) 95-131
- 5 Lai JC, Feng S, Terrault NA, Lizaola B, Hayssen H, Covinsky K. Frailty predicts waitlist mortality in liver transplant candidates. Am J Transplant 2014; 14 (08) 1870-1879
- 6 Merli M, Lucidi C, Giannelli V. et al. Cirrhotic patients are at risk for health care-associated bacterial infections. Clin Gastroenterol Hepatol 2010; 8 (11) 979-985
- 7 Merli M, Giusto M, Gentili F. et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int 2010; 30 (02) 208-214
- 8 Yang W, Guo G, Cui B. et al. Malnutrition according to the Global Leadership Initiative on Malnutrition criteria is associated with in-hospital mortality and prolonged length of stay in patients with cirrhosis. Nutrition 2023; 105: 111860
- 9 Sam J, Nguyen GC. Protein-calorie malnutrition as a prognostic indicator of mortality among patients hospitalized with cirrhosis and portal hypertension. Liver Int 2009; 29 (09) 1396-1402
- 10 Duong N, Sadowski B, Rangnekar AS. The impact of frailty, sarcopenia, and malnutrition on liver transplant outcomes. Clin Liver Dis (Hoboken) 2021; 17 (04) 271-276
- 11 Chapman B, Goh SK, Parker F. et al. Malnutrition and low muscle strength are independent predictors of clinical outcomes and healthcare costs after liver transplant. Clin Nutr ESPEN 2022; 48: 210-219
- 12 Lai JC, Covinsky KE, Dodge JL. et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology 2017; 66 (02) 564-574
- 13 Chapman B, Wong D, Sinclair M. et al. Reversing malnutrition and low muscle strength with targeted enteral feeding in patients awaiting liver transplant: a randomized controlled trial. Hepatology 2024; 80 (05) 1134-1146
- 14 Brustia R, Monsel A, Skurzak S. et al. Guidelines for perioperative care for liver transplantation: Enhanced Recovery After Surgery (ERAS) recommendations. Transplantation 2022; 106 (03) 552-561
- 15 Fonseca ALF, Santos BC, Anastácio LR. et al. Global Leadership Initiative on Malnutrition criteria for the diagnosis of malnutrition and prediction of mortality in patients awaiting liver transplant: a validation study. Nutrition 2023; 114: 112093
- 16 Le Cornu KA, McKiernan FJ, Kapadia SA, Neuberger JM. A prospective randomized study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. Transplantation 2000; 69 (07) 1364-1369
- 17 Trovato FM, Artru F. Nutritional optimization in liver transplant patients: from the pre-transplant setting to post-transplant outcome. Acta Gastroenterol Belg 2023; 86 (02) 335-342
- 18 Cruz-Jentoft AJ, Bahat G, Bauer J. et al; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48 (01) 16-31
- 19 Welch N, Attaway A, Bellar A, Alkhafaji H, Vural A, Dasarathy S. Compound sarcopenia in hospitalized patients with cirrhosis worsens outcomes with increasing age. Nutrients 2021; 13 (02) 659
- 20 Welch N, Dasarathy J, Runkana A. et al. Continued muscle loss increases mortality in cirrhosis: impact of aetiology of liver disease. Liver Int 2020; 40 (05) 1178-1188
- 21 Dasarathy S. Consilience in sarcopenia of cirrhosis. J Cachexia Sarcopenia Muscle 2012; 3 (04) 225-237
- 22 Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016; 65 (06) 1232-1244
- 23 van Vugt JL, Levolger S, de Bruin RW, van Rosmalen J, Metselaar HJ, IJzermans JN. Systematic review and meta-analysis of the impact of computed tomography-assessed skeletal muscle mass on outcome in patients awaiting or undergoing liver transplantation. Am J Transplant 2016; 16 (08) 2277-2292
- 24 van Vugt JLA, Alferink LJM, Buettner S. et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol 2018; 68 (04) 707-714
- 25 Meeks AC, Madill J. Sarcopenia in liver transplantation: a review. Clin Nutr ESPEN 2017; 22: 76-80
- 26 Montgomery J, Englesbe M. Sarcopenia in liver transplantation. Curr Transplant Rep 2019; 6 (01) 7-15
- 27 Ooi PH, Hager A, Mazurak VC. et al. Sarcopenia in chronic liver disease: impact on outcomes. Liver Transpl 2019; 25 (09) 1422-1438
- 28 Peng S, Plank LD, McCall JL, Gillanders LK, McIlroy K, Gane EJ. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr 2007; 85 (05) 1257-1266
- 29 Caregaro L, Alberino F, Amodio P. et al. Malnutrition in alcoholic and virus-related cirrhosis. Am J Clin Nutr 1996; 63 (04) 602-609
- 30 DiCecco SR, Wieners EJ, Wiesner RH, Southorn PA, Plevak DJ, Krom RA. Assessment of nutritional status of patients with end-stage liver disease undergoing liver transplantation. Mayo Clin Proc 1989; 64 (01) 95-102
- 31 Lolli R, Marchesini G, Bianchi G. et al. Anthropometric assessment of the nutritional status of patients with liver cirrhosis in an Italian population. Ital J Gastroenterol 1992; 24 (08) 429-435
- 32 Sarin SK, Dhingra N, Bansal A, Malhotra S, Guptan RC. Dietary and nutritional abnormalities in alcoholic liver disease: a comparison with chronic alcoholics without liver disease. Am J Gastroenterol 1997; 92 (05) 777-783
- 33 Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999-2016: observational study. BMJ 2018; 362: k2817
- 34 Kim D, Li AA, Gadiparthi C. et al. Changing trends in etiology-based annual mortality from chronic liver disease, from 2007 through 2016. Gastroenterology 2018; 138 (02) 185-189
- 35 Barve S, Chen SY, Kirpich I, Watson WH, Mcclain C. Development, prevention, and treatment of alcohol-induced organ injury: the role of nutrition. Alcohol Res 2017; 38 (02) 289-302
- 36 Matarazzo A, Hennekens CH, Dunn J. et al. New clinical and public health challenges: increasing trends in United States alcohol related mortality. Am J Med 2025; 138 (03) 477-486
- 37 Dubin RL, Heymsfield SB, Ravussin E, Greenway FL. Glucagon-like peptide-1 receptor agonist-based agents and weight loss composition: filling the gaps. Diabetes Obes Metab 2024; 26 (12) 5503-5518
- 38 Eslamparast T, Montano-Loza AJ, Raman M, Tandon P. Sarcopenic obesity in cirrhosis—the confluence of 2 prognostic titans. Liver Int 2018; 38 (10) 1706-1717
- 39 Gawrieh S, Dasarathy S, Tu W. et al; AlcHepNet Investigators. Randomized trial of anakinra plus zinc vs. prednisone for severe alcohol-associated hepatitis. J Hepatol 2024; 80 (05) 684-693
- 40 Montano-Loza AJ, Angulo P, Meza-Junco J. et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle 2016; 7 (02) 126-135
- 41 Tandon P, Raman M, Mourtzakis M, Merli M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology 2017; 65 (03) 1044-1057
- 42 McClain CJ, Rios CD, Condon S, Marsano LS. Malnutrition and alcohol-associated hepatitis. Clin Liver Dis 2021; 25 (03) 557-570
- 43 Holmes CJ, Racette SB. The utility of body composition assessment in nutrition and clinical practice: an overview of current methodology. Nutrients 2021; 13 (08) 2493
- 44 Bosy-Westphal A, Müller MJ. Diagnosis of obesity based on body composition-associated health risks—time for a change in paradigm. Obes Rev 2021; 22 (Suppl. 02) e13190
- 45 Sinclair M, Chapman B, Hoermann R. et al. Handgrip strength adds more prognostic value to the model for end-stage liver disease score than imaging-based measures of muscle mass in men with cirrhosis. Liver Transpl 2019; 25 (10) 1480-1487
- 46 European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol 2019; 70 (01) 172-193
- 47 Lin FP, Bloomer PM, Grubbs RK. et al. Low daily step count is associated with a high risk of hospital admission and death in community-dwelling patients with cirrhosis. Clin Gastroenterol Hepatol 2022; 20 (08) 1813-1820.e2
- 48 McDaniel J, Davuluri G, Hill EA. et al. Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol 2016; 310 (03) G163-G170
- 49 Durand F, Buyse S, Francoz C. et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol 2014; 60 (06) 1151-1157
- 50 Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care 2014; 17 (05) 389-395
- 51 Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: considerations for the utility of computed tomography imaging and ultrasonography. Curr Opin Clin Nutr Metab Care 2016; 19 (02) 125-130
- 52 Pirlich M, Schütz T, Spachos T. et al. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology 2000; 32 (06) 1208-1215
- 53 da Silva Fink J, Daniel de Mello P, Daniel de Mello E. Subjective global assessment of nutritional status—a systematic review of the literature. Clin Nutr 2015; 34 (05) 785-792
- 54 Malone A, Mogensen KM. Key approaches to diagnosing malnutrition in adults. Nutr Clin Pract 2022; 37 (01) 23-34
- 55 Aslam M, Farooq S, Rizwan B, Asghar A. Assessment of nutritional status of the cirrhotic patients on enteral and parenteral feeding. Nutr Health 2022; 28 (01) 69-76
- 56 Christopher KB. Nutritional metabolomics in critical illness. Curr Opin Clin Nutr Metab Care 2018; 21 (02) 121-125
- 57 Freemark M. Metabolomics in nutrition research: biomarkers predicting mortality in children with severe acute malnutrition. Food Nutr Bull 2015; 36 (01) S88-S92
- 58 Singal AK, Charlton MR. Nutrition in alcoholic liver disease. Clin Liver Dis 2012; 16 (04) 805-826
- 59 Traub J, Reiss L, Aliwa B, Stadlbauer V. Malnutrition in patients with liver cirrhosis. Nutrients 2021; 13 (02) 540
- 60 Mendenhall CL, Anderson S, Weesner RE, Goldberg SJ, Crolic KA. Veterans Administration Cooperative Study Group on Alcoholic Hepatitis. Protein-calorie malnutrition associated with alcoholic hepatitis. Am J Med 1984; 76 (02) 211-222
- 61 Ray S, Khanra D, Sonthalia N. et al. Clinico-biochemical correlation to histological findings in alcoholic liver disease: a single centre study from eastern India. J Clin Diagn Res 2014; 8 (10) MC01-MC05
- 62 Patek Jr AJ, Post J, Ratnoff OD, Mankin H, Hillman RW. Dietary treatment of cirrhosis of the liver; results in 124 patients observed during a 10 year period. J Am Med Assoc 1948; 138 (08) 543-549
- 63 Mendenhall C, Roselle GA, Gartside P, Moritz T. Relationship of protein calorie malnutrition to alcoholic liver disease: a reexamination of data from two Veterans Administration Cooperative Studies. Alcohol Clin Exp Res 1995; 19 (03) 635-641
- 64 Moreno C, Deltenre P, Senterre C. et al. Intensive enteral nutrition is ineffective for patients with severe alcoholic hepatitis treated with corticosteroids. Gastroenterology 2016; 150 (04) 903-10.e8
- 65 Bunout D, Aicardi V, Hirsch S. et al. Nutritional support in hospitalized patients with alcoholic liver disease. Eur J Clin Nutr 1989; 43 (09) 615-621
- 66 Cabre E, Gonzalez-Huix F, Abad-Lacruz A. et al. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. Gastroenterology 1990; 98 (03) 715-720
- 67 Dupont B, Dao T, Joubert C. et al. Randomised clinical trial: enteral nutrition does not improve the long-term outcome of alcoholic cirrhotic patients with jaundice. Aliment Pharmacol Ther 2012; 35 (10) 1166-1174
- 68 Hirsch S, Bunout D, de la Maza P. et al. Controlled trial on nutrition supplementation in outpatients with symptomatic alcoholic cirrhosis. JPEN J Parenter Enteral Nutr 1993; 17 (02) 119-124
- 69 Antar R, Wong P, Ghali P. A meta-analysis of nutritional supplementation for management of hospitalized alcoholic hepatitis. Can J Gastroenterol 2012; 26 (07) 463-467
- 70 Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int 2015; 35 (09) 2072-2078
- 71 Kearns PJ, Young H, Garcia G. et al. Accelerated improvement of alcoholic liver disease with enteral nutrition. Gastroenterology 1992; 102 (01) 200-205
- 72 Lee DU, Fan GH, Hastie DJ. et al. The impact of malnutrition on the hospital and infectious outcomes of patients admitted with alcoholic hepatitis: 2011 to 2017 analysis of US hospitals. J Clin Gastroenterol 2022; 56 (04) 349-359
- 73 Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol 2012; 27 (03) 430-441
- 74 Hirsch S, de la Maza MP, Gattás V. et al. Nutritional support in alcoholic cirrhotic patients improves host defenses. J Am Coll Nutr 1999; 18 (05) 434-441
- 75 Chen CJ, Wang LC, Kuo HT, Fang YC, Lee HF. Significant effects of late evening snack on liver functions in patients with liver cirrhosis: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol 2019; 34 (07) 1143-1152
- 76 Plank LD, Gane EJ, Peng S. et al. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology 2008; 48 (02) 557-566
- 77 Giri P, Taneja S, Sahni N. et al. Outpatient intensive nutrition therapy improves survival and frailty in males with alcohol-related ACLF—randomized controlled trial. Clin Gastroenterol Hepatol 2025; 23 (07) 1164-1173.e2
- 78 Vaisman N, Katzman H, Carmiel-Haggai M, Lusthaus M, Niv E. Breakfast improves cognitive function in cirrhotic patients with cognitive impairment. Am J Clin Nutr 2010; 92 (01) 137-140
- 79 Vatsalya V, Royer AJ, Jha SK. et al. Drinking and laboratory biomarkers, and nutritional status characterize the clinical presentation of early-stage alcohol-associated liver disease. Adv Clin Chem 2023; 114: 83-108
- 80 Hariri Z, Hekmatdoost A, Pashayee-Khamene F, Karimi S, Ahmadzadeh S, Yari Z. Dietary fiber intake and mortality among survivors of liver cirrhosis: a prospective cohort study. Heliyon 2023; 9 (06) e16170
- 81 Hassanein T, McClain CJ, Vatsalya V. et al. Safety, pharmacokinetics, and efficacy signals of larsucosterol (DUR-928) in alcohol-associated hepatitis. Am J Gastroenterol 2024; 119 (01) 107-115
- 82 Lieber CS. Alcohol and malnutrition in the pathogenesis of liver disease. JAMA 1975; 233 (10) 1077-1080
- 83 Rinella ME, Lazarus JV, Ratziu V. et al; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023; 79 (06) 1542-1556
- 84 Marti-Aguado D, Calleja JL, Vilar-Gomez E. et al. Low-to-moderate alcohol consumption is associated with increased fibrosis in individuals with metabolic dysfunction-associated steatotic liver disease. J Hepatol 2024; 81 (06) 930-940
- 85 Warner JB, Zirnheld KH, Hu H. et al. Analysis of alcohol use, consumption of micronutrient and macronutrients, and liver health in the 2017-2018 National Health and Nutrition Examination Survey. Alcohol Clin Exp Res 2022; 46 (11) 2025-2040
- 86 Heyman JK, Whitfield CJ, Brock KE, McCaughan GW, Donaghy AJ. Dietary protein intakes in patients with hepatic encephalopathy and cirrhosis: current practice in NSW and ACT. Med J Aust 2006; 185 (10) 542-543
- 87 Soulsby CT, Morgan MY. Dietary management of hepatic encephalopathy in cirrhotic patients: survey of current practice in United Kingdom. BMJ 1999; 318 (7195) 1391
- 88 Merli M, Giusto M, Lucidi C. et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis 2013; 28 (02) 281-284
- 89 Córdoba J, López-Hellín J, Planas M. et al. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J Hepatol 2004; 41 (01) 38-43
- 90 Morgan TR, Moritz TE, Mendenhall CL, Haas R. Protein consumption and hepatic encephalopathy in alcoholic hepatitis. VA Cooperative Study Group #275. J Am Coll Nutr 1995; 14 (02) 152-158
- 91 Iqbal U, Jadeja RN, Khara HS, Khurana S. A comprehensive review evaluating the impact of protein source (vegetarian vs. meat based) in hepatic encephalopathy. Nutrients 2021; 13 (02) 370
- 92 Maharshi S, Sharma BC, Sachdeva S, Srivastava S, Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin Gastroenterol Hepatol 2016; 14 (03) 454-460.e3 , quiz e33
- 93 Vilstrup H, Amodio P, Bajaj J. et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014; 60 (02) 715-735
- 94 Kawaguchi T, Izumi N, Charlton MR, Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 2011; 54 (03) 1063-1070
- 95 Holecek M, Kandar R, Sispera L, Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids 2011; 40 (02) 575-584
- 96 Gluud LL, Dam G, Les I. et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 2017; 5 (05) CD001939
- 97 Nanji AA, French SW. Dietary factors and alcoholic cirrhosis. Alcohol Clin Exp Res 1986; 10 (03) 271-273
- 98 Kirpich IA, Miller ME, Cave MC, Joshi-Barve S, McClain CJ. Alcoholic liver disease: update on the role of dietary fat. Biomolecules 2016; 6 (01) 1
- 99 Hodson L, Rosqvist F, Parry SA. The influence of dietary fatty acids on liver fat content and metabolism. Proc Nutr Soc 2020; 79 (01) 30-41
- 100 Bridges FS. Relationship between dietary beef, fat, and pork and alcoholic cirrhosis. Int J Environ Res Public Health 2009; 6 (09) 2417-2425
- 101 Nanji AA, Mendenhall CL, French SW. Beef fat prevents alcoholic liver disease in the rat. Alcohol Clin Exp Res 1989; 13 (01) 15-19
- 102 Nanji AA, Griniuviene B, Sadrzadeh SM, Levitsky S, McCully JD. Effect of type of dietary fat and ethanol on antioxidant enzyme mRNA induction in rat liver. J Lipid Res 1995; 36 (04) 736-744
- 103 Nanji AA, French SW. Dietary linoleic acid is required for development of experimentally induced alcoholic liver injury. Life Sci 1989; 44 (03) 223-227
- 104 Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Institute of Medicine of the National Academy of Sciences. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. National Academy Press; 2005
- 105 Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 2011; 93 (05) 950-962
- 106 Nanji AA, Zhao S, Lamb RG, Dannenberg AJ, Sadrzadeh SM, Waxman DJ. Changes in cytochromes P-450, 2E1, 2B1, and 4A, and phospholipases A and C in the intragastric feeding rat model for alcoholic liver disease: relationship to dietary fats and pathologic liver injury. Alcohol Clin Exp Res 1994; 18 (04) 902-908
- 107 Polavarapu R, Spitz DR, Sim JE. et al. Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil. Hepatology 1998; 27 (05) 1317-1323
- 108 Kono H, Enomoto N, Connor HD. et al. Medium-chain triglycerides inhibit free radical formation and TNF-alpha production in rats given enteral ethanol. Am J Physiol Gastrointest Liver Physiol 2000; 278 (03) G467-G476
- 109 Kirpich IA, Feng W, Wang Y. et al. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res 2012; 36 (05) 835-846
- 110 Zhong W, Li Q, Xie G. et al. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats. Am J Physiol Gastrointest Liver Physiol 2013; 305 (12) G919-G932
- 111 Song BJ, Moon KH, Olsson NU, Salem Jr N. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids. J Hepatol 2008; 49 (02) 262-273
- 112 Wada S, Yamazaki T, Kawano Y, Miura S, Ezaki O. Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice. J Hepatol 2008; 49 (03) 441-450
- 113 Huang LL, Wan JB, Wang B. et al. Suppression of acute ethanol-induced hepatic steatosis by docosahexaenoic acid is associated with downregulation of stearoyl-CoA desaturase 1 and inflammatory cytokines. Prostaglandins Leukot Essent Fatty Acids 2013; 88 (05) 347-353
- 114 Nanji AA, Zhao S, Sadrzadeh SM, Dannenberg AJ, Tahan SR, Waxman DJ. Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil-ethanol-fed rats. Alcohol Clin Exp Res 1994; 18 (05) 1280-1285
- 115 Morimoto M, Zern MA, Hagbjörk AL, Ingelman-Sundberg M, French SW. Fish oil, alcohol, and liver pathology: role of cytochrome P450 2E1. Proc Soc Exp Biol Med 1994; 207 (02) 197-205
- 116 Wang Y, Zhao Y, Li M, Wang Y, Yu S, Zeng T. Docosahexaenoic acid supplementation failed to attenuate chronic alcoholic fatty liver in mice. Acta Biochim Biophys Sin (Shanghai) 2016; 48 (05) 482-484
- 117 McClain CJ, Kirpich IA, Smart L. Malnutrition and Liver Diseases. . Chapter 19, In: Schiff's Diseases of the Liver, 12th Edition. Schiff ER, Maddrey WC, Sorrell MF. , Eds. 2017 Schiff's Diseases of the Liver, 12th Edition, pp. 460-487 . Wiley, 2017
- 118 Warner DR, Warner JB, Hardesty JE. et al. Beneficial effects of an endogenous enrichment in n3-PUFAs on Wnt signaling are associated with attenuation of alcohol-mediated liver disease in mice. FASEB J 2021; 35 (02) e21377
- 119 Warner DR, Warner JB, Hardesty JE. et al. Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. J Lipid Res 2019; 60 (12) 2034-2049
- 120 Warner J, Hardesty J, Song Y. et al. Fat-1 transgenic mice with augmented n3-polyunsaturated fatty acids are protected from liver injury caused by acute-on-chronic ethanol administration. Front Pharmacol 2021; 12: 711590
- 121 Wang M, Zhang X, Ma LJ. et al. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: a mechanism for hepatoprotective effect against alcoholic liver disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863 (12) 3190-3201
- 122 Huang W, Wang B, Li X, Kang JX. Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis. Biofactors 2015; 41 (06) 453-462
- 123 Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol 2014; 20 (07) 1746-1755
- 124 Juárez-Hernández E, Chávez-Tapia NC, Uribe M, Barbero-Becerra VJ. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr J 2016; 15 (01) 72
- 125 Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis 2008; 28 (04) 360-369
- 126 Henkel J, Coleman CD, Schraplau A. et al. Induction of steatohepatitis (NASH) with insulin resistance in wildtype B6 mice by a western-type diet containing soybean oil and cholesterol. Mol Med 2017; 23: 70-82
- 127 Duwaerts CC, Amin AM, Siao K. et al. Specific macronutrients exert unique influences on the adipose-liver axis to promote hepatic steatosis in mice. Cell Mol Gastroenterol Hepatol 2017; 4 (02) 223-236
- 128 Araya J, Rodrigo R, Videla LA. et al. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 2004; 106 (06) 635-643
- 129 Lu W, Li S, Li J. et al. Effects of omega-3 fatty acid in nonalcoholic fatty liver disease: a meta-analysis. Gastroenterol Res Pract 2016; 2016: 1459790
- 130 Ouyang X, Cirillo P, Sautin Y. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 2008; 48 (06) 993-999
- 131 Lanaspa MA, Sanchez-Lozada LG, Choi YJ. et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 2012; 287 (48) 40732-40744
- 132 Perez-Pozo SE, Schold J, Nakagawa T, Sánchez-Lozada LG, Johnson RJ, Lillo JL. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes (Lond) 2010; 34 (03) 454-461
- 133 Fan Y, Zhang Y, Chen C. et al. Fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease: a prospective study. Hepatol Res 2023; 53 (06) 479-488
- 134 Abdelmalek MF, Lazo M, Horska A. et al; Fatty Liver Subgroup of Look AHEAD Research Group. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 2012; 56 (03) 952-960
- 135 Abdelmalek MF, Suzuki A, Guy C. et al; Nonalcoholic Steatohepatitis Clinical Research Network. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51 (06) 1961-1971
- 136 Ishimoto T, Lanaspa MA, Rivard CJ. et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 2013; 58 (05) 1632-1643
- 137 Schwimmer JB, Ugalde-Nicalo P, Welsh JA. et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 2019; 321 (03) 256-265
- 138 Cohen CC, Li KW, Alazraki AL. et al. Dietary sugar restriction reduces hepatic de novo lipogenesis in adolescent boys with fatty liver disease. J Clin Invest 2021; 131 (24) e150996
- 139 Mager DR, Iñiguez IR, Gilmour S, Yap J. The effect of a low fructose and low glycemic index/load (FRAGILE) dietary intervention on indices of liver function, cardiometabolic risk factors, and body composition in children and adolescents with nonalcoholic fatty liver disease (NAFLD). JPEN J Parenter Enteral Nutr 2015; 39 (01) 73-84
- 140 Hamza RT, Ahmed AY, Rezk DG, Hamed AI. Dietary fructose intake in obese children and adolescents: relation to procollagen type III N-terminal peptide (P3NP) and non-alcoholic fatty liver disease. J Pediatr Endocrinol Metab 2016; 29 (12) 1345-1352
- 141 Lustig RH, Mulligan K, Noworolski SM. et al. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity (Silver Spring) 2016; 24 (02) 453-460
- 142 Ibarra-Reynoso LDR, López-Lemus HL, Garay-Sevilla ME, Malacara JM. Effect of restriction of foods with high fructose corn syrup content on metabolic indices and fatty liver in obese children. Obes Facts 2017; 10 (04) 332-340
- 143 Schwarz JM, Noworolski SM, Erkin-Cakmak A. et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology 2017; 153 (03) 743-752
- 144 Zhao L, Zhang X, Coday M. et al. Sugar-sweetened and artificially sweetened beverages and risk of liver cancer and chronic liver disease mortality. JAMA 2023; 330 (06) 537-546
- 145 Parisse S, Carnevale S, Di Bartolomeo F. et al. A low daily intake of simple sugars in the diet is associated with improved liver function in cirrhotic liver transplant candidates. Nutrients 2023; 15 (07) 1575
- 146 Orliacq J, Pérez-Cornago A, Parry SA, Kelly RK, Koutoukidis DA, Carter JL. Associations between types and sources of dietary carbohydrates and liver fat: a UK Biobank study. BMC Med 2023; 21 (01) 444
- 147 Liu Z, Fang T. Association between dietary carbohydrate to fiber ratio and metabolic dysfunction associated fatty liver disease in adults: evidence from the NHANES 2017-2020. J Health Popul Nutr 2024; 43 (01) 43
- 148 Guo W, Ge X, Lu J. et al. Diet and risk of non-alcoholic fatty liver disease, cirrhosis, and liver cancer: a large prospective cohort study in UK biobank. Nutrients 2022; 14 (24) 5335
- 149 Montemayor S, García S, Monserrat-Mesquida M, Tur JA, Bouzas C. Dietary patterns, foods, and nutrients to ameliorate non-alcoholic fatty liver disease: a scoping review. Nutrients 2023; 15 (18) 3987
- 150 Zhang S, Zhao J, Xie F. et al. Dietary fiber-derived short-chain fatty acids: a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease. Obes Rev 2021; 22 (11) e13316
- 151 Karino S, Usuda H, Kanda S. et al. A diet high in glucose and deficient in dietary fibre causes fat accumulation in the liver without weight gain. Biochem Biophys Rep 2024; 40: 101848
- 152 Ghare SS, Charpentier BT, Ghooray DT. et al. Tributyrin mitigates ethanol-induced lysine acetylation of histone-H3 and p65-NFκB downregulating CCL2 expression and consequent liver inflammation and injury. Nutrients 2023; 15 (20) 4397
- 153 Singhal R, Donde H, Ghare S. et al. Decrease in acetyl-CoA pathway utilizing butyrate-producing bacteria is a key pathogenic feature of alcohol-induced functional gut microbial dysbiosis and development of liver disease in mice. Gut Microbes 2021; 13 (01) 1946367
- 154 Donde H, Ghare S, Joshi-Barve S. et al. Tributyrin inhibits ethanol-induced epigenetic repression of CPT-1A and attenuates hepatic steatosis and injury. Cell Mol Gastroenterol Hepatol 2020; 9 (04) 569-585
- 155 Bull-Otterson L, Feng W, Kirpich I. et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013; 8 (01) e53028
- 156 Buonomo AR, Zappulo E, Scotto R. et al. Vitamin D deficiency is a risk factor for infections in patients affected by HCV-related liver cirrhosis. Int J Infect Dis 2017; 63: 23-29
- 157 Falleti E, Bitetto D, Fabris C. et al. Vitamin D receptor gene polymorphisms and hepatocellular carcinoma in alcoholic cirrhosis. World J Gastroenterol 2010; 16 (24) 3016-3024
- 158 Mayr U, Fahrenkrog-Petersen L, Batres-Baires G. et al. Vitamin D deficiency is highly prevalent in critically ill patients and a risk factor for mortality: a prospective observational study comparing noncirrhotic patients and patients with cirrhosis. J Intensive Care Med 2020; 35 (10) 992-1001
- 159 Piquet MA, Hourmand-Ollivier I, Dao T. Vitamin K deficiency and hepatocellular carcinoma. JAMA 2004; 292 (21) 2580-2581 , author reply 2581
- 160 Raafat Rowida I, Eshra KA, El-Sharaby RM. et al. Apa1 (rs7975232) SNP in the vitamin D receptor is linked to hepatocellular carcinoma in hepatitis C virus cirrhosis. Br J Biomed Sci 2020; 77 (02) 53-57
- 161 Wu YQ, Fan WZ, Xue M. et al. 25-OH-vitamin D deficiency identifies poor tumor response in hepatocellular carcinoma treated with transarterial chemoembolization. Clin Transl Oncol 2020; 22 (01) 70-80
- 162 Yang F, Ren H, Gao Y, Zhu Y, Huang W. The value of severe vitamin D deficiency in predicting the mortality risk of patients with liver cirrhosis: a meta-analysis. Clin Res Hepatol Gastroenterol 2019; 43 (06) 722-729
- 163 Lin S, Wang W, Shi L. et al. Severe vitamin D deficiency is strongly associated with liver dysfunction and disease severity in hepatitis B virus related cirrhosis and liver failure patients. J Nutr Sci Vitaminol (Tokyo) 2022; 68 (01) 16-22
- 164 Mohamed AA, Al-Karmalawy AA, El-Kholy AA. et al. Effect of vitamin D supplementation in patients with liver cirrhosis having spontaneous bacterial peritonitis: a randomized controlled study. Eur Rev Med Pharmacol Sci 2021; 25 (22) 6908-6919
- 165 Assimos DG. Re: Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: an evidence review for the U.S. preventive services task force. J Urol 2019; 201 (04) 663
- 166 Goto RL, Tablas MB, Prata GB. et al. Vitamin D3 supplementation alleviates chemically-induced cirrhosis-associated hepatocarcinogenesis. J Steroid Biochem Mol Biol 2022; 215: 106022
- 167 Grover I, Gunjan D, Singh N. et al. Effect of vitamin D supplementation on vitamin D level and bone mineral density in patients with cirrhosis: a randomized clinical trial. Am J Gastroenterol 2021; 116 (10) 2098-2104
- 168 Kong SH, Jang HN, Kim JH, Kim SW, Shin CS. Effect of vitamin D supplementation on risk of fractures and falls according to dosage and interval: a meta-analysis. Endocrinol Metab (Seoul) 2022; 37 (02) 344-358
- 169 Savić Ž, Vračarić V, Milić N. et al. Vitamin D supplementation in patients with alcoholic liver cirrhosis: a prospective study. Minerva Med 2018; 109 (05) 352-357
- 170 Mohammad MK, Zhou Z, Cave M, Barve A, McClain CJ. Zinc and liver disease. Nutr Clin Pract 2012; 27 (01) 8-20
- 171 Sengupta S, Wroblewski K, Aronsohn A. et al. Screening for zinc deficiency in patients with cirrhosis: when should we start?. Dig Dis Sci 2015; 60 (10) 3130-3135
- 172 Zhou Z, Kang X, Jiang Y. et al. Preservation of hepatocyte nuclear factor-4alpha is associated with zinc protection against TNF-alpha hepatotoxicity in mice. Exp Biol Med (Maywood) 2007; 232 (05) 622-628
- 173 Kodama H, Tanaka M, Naito Y, Katayama K, Moriyama M. Japan's practical guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis. Int J Mol Sci 2020; 21 (08) 2941
- 174 McClain C, Vatsalya V, Cave M. Role of zinc in the development/progression of alcoholic liver disease. Curr Treat Options Gastroenterol 2017; 15 (02) 285-295
- 175 Marchesini G, Fabbri A, Bianchi G, Brizi M, Zoli M. Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology 1996; 23 (05) 1084-1092
- 176 Matsuoka S, Matsumura H, Nakamura H. et al. Zinc supplementation improves the outcome of chronic hepatitis C and liver cirrhosis. J Clin Biochem Nutr 2009; 45 (03) 292-303
- 177 Chavez-Tapia NC, Cesar-Arce A, Barrientos-Gutiérrez T, Villegas-López FA, Méndez-Sanchez N, Uribe M. A systematic review and meta-analysis of the use of oral zinc in the treatment of hepatic encephalopathy. Nutr J 2013; 12: 74
- 178 Shen YC, Chang YH, Fang CJ, Lin YS. Zinc supplementation in patients with cirrhosis and hepatic encephalopathy: a systematic review and meta-analysis. Nutr J 2019; 18 (01) 34
- 179 Lavine JE, Schwimmer JB, Van Natta ML. et al; Nonalcoholic Steatohepatitis Clinical Research Network. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 2011; 305 (16) 1659-1668
- 180 Sanyal AJ, Chalasani N, Kowdley KV. et al; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362 (18) 1675-1685
- 181 Banini BA, Cazanave SC, Yates KP. et al; Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN). Haptoglobin 2 allele is associated with histologic response to vitamin E in subjects with nonalcoholic steatohepatitis. J Clin Gastroenterol 2019; 53 (10) 750-758
- 182 Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm?. PLoS One 2013; 8 (09) e74558
- 183 Civelek M, Podszun MC. Genetic factors associated with response to vitamin E treatment in NAFLD. Antioxidants 2022; 11 (07) 1284
- 184 Hoofnagle JH, Van Natta ML, Kleiner DE. et al; Non-alcoholic Steatohepatitis Clinical Research Network (NASH CRN). Vitamin E and changes in serum alanine aminotransferase levels in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2013; 38 (02) 134-143
- 185 Miller III ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142 (01) 37-46
- 186 Neuhouser ML, Barnett MJ, Kristal AR. et al. Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev 2009; 18 (08) 2202-2206
- 187 Pariente A, Rosa I, Dharancy S, Hanslik B. for the Investigators of PERSEPT Study. Nonalcoholic fatty liver disease: opinions, population served, and management from a sample of French hepato(gastroentero)logists (PERSEPT study). Eur J Gastroenterol Hepatol 2022; 34 (07) 791-800
- 188 Podszun MC, Alawad AS, Lingala S. et al. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol 2020; 37: 101710
- 189 Rinella ME, Lominadze Z, Loomba R. et al. Practice patterns in NAFLD and NASH: real life differs from published guidelines. Therap Adv Gastroenterol 2016; 9 (01) 4-12
- 190 Sato K, Gosho M, Yamamoto T. et al. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Nutrition 2015; 31 (7-8): 923-930
- 191 Shelley K, Articolo A, Luthra R, Charlton M. Clinical characteristics and management of patients with nonalcoholic steatohepatitis in a real-world setting: analysis of the Ipsos NASH therapy monitor database. BMC Gastroenterol 2023; 23 (01) 160
- 192 Vadarlis A, Antza C, Bakaloudi DR. et al. Systematic review with meta-analysis: the effect of vitamin E supplementation in adult patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2021; 36 (02) 311-319
- 193 Vilar-Gomez E, Vuppalanchi R, Gawrieh S. et al. Vitamin E improves transplant-free survival and hepatic decompensation among patients with nonalcoholic steatohepatitis and advanced fibrosis. Hepatology 2020; 71 (02) 495-509
- 194 Vogli S, Naska A, Marinos G, Kasdagli MI, Orfanos P. The effect of vitamin E supplementation on serum aminotransferases in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis. Nutrients 2023; 15 (17) 3733
- 195 Shine A, Heckroth M, Elmasry M. et al. S1274 Outcomes of vitamin E therapy in a veteran population with non-alcoholic steatohepatitis among groups with and without diabetes. Am J Gastroenterol 2022; 117 (10S) e920-e921
- 196 Hoyumpa Jr AM. Mechanisms of thiamin deficiency in chronic alcoholism. Am J Clin Nutr 1980; 33 (12) 2750-2761
- 197 Abbott-Johnson WJ, Kerlin P, Abiad G, Clague AE, Cuneo RC. Dark adaptation in vitamin A-deficient adults awaiting liver transplantation: improvement with intramuscular vitamin A treatment. Br J Ophthalmol 2011; 95 (04) 544-548
- 198 Chaves GV, Peres WA, Gonçalves JC, Ramalho A. Vitamin A and retinol-binding protein deficiency among chronic liver disease patients. Nutrition 2015; 31 (05) 664-668
- 199 Song M, Li X, Zhang X. et al. Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol 2018; 314 (01) G119-G130
- 200 Song M, Vos MB, McClain CJ. Copper-fructose interactions: a novel mechanism in the pathogenesis of NAFLD. Nutrients 2018; 10 (11) 1815
- 201 Glasdam SM, Glasdam S, Peters GH. The importance of magnesium in the human body: a systematic literature review. Adv Clin Chem 2016; 73: 169-193
- 202 McClain CJ, Marsano L, Burk RF, Bacon B. Trace metals in liver disease. Semin Liver Dis 1991; 11 (04) 321-339
- 203 Lazo M, Solga SF, Horska A. et al; Fatty Liver Subgroup of the Look AHEAD Research Group. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. Diabetes Care 2010; 33 (10) 2156-2163
- 204 Yki-Järvinen H. Nutritional modulation of nonalcoholic fatty liver disease and insulin resistance: human data. Curr Opin Clin Nutr Metab Care 2010; 13 (06) 709-714
- 205 Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 2010; 7 (05) 251-264
- 206 Zivkovic AM, German JB, Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 2007; 86 (02) 285-300
- 207 Lowell JA. Nutritional assessment and therapy in patients requiring liver transplantation. Liver Transpl Surg 1996; 2 (5, Suppl 1): 79-88
- 208 Gheorghe L, Iacob R, Vădan R, Iacob S, Gheorghe C. Improvement of hepatic encephalopathy using a modified high-calorie high-protein diet. Rom J Gastroenterol 2005; 14 (03) 231-238
- 209 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67 (01) 328-357
- 210 Wadhawan M, Anand AC. Coffee and liver disease. J Clin Exp Hepatol 2016; 6 (01) 40-46
- 211 Liu F, Wang X, Wu G. et al. Coffee consumption decreases risks for hepatic fibrosis and cirrhosis: a meta-analysis. PLoS One 2015; 10 (11) e0142457
- 212 Marventano S, Salomone F, Godos J. et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: a systematic review and meta-analysis of observational studies. Clin Nutr 2016; 35 (06) 1269-1281
- 213 Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C. Coffee reduces risk for hepatocellular carcinoma: an updated meta-analysis. Clin Gastroenterol Hepatol 2013; 11 (11) 1413-1421.e1
- 214 Inoue M, Tsugane S. Coffee drinking and reduced risk of liver cancer: update on epidemiological findings and potential mechanisms. Curr Nutr Rep 2019; 8 (03) 182-186
- 215 Loftfield E, Shiels MS, Graubard BI. et al. Associations of coffee drinking with systemic immune and inflammatory markers. Cancer Epidemiol Biomarkers Prev 2015; 24 (07) 1052-1060