RSS-Feed abonnieren
DOI: 10.1055/a-2663-5214
Überwachung labordiagnostischer Parameter bei Intensivpatienten – Teil 1
Hämatologie, Gerinnung und Akute-Phase-ProteineMonitoring of laboratory diagnostic parameters in critical care patients – Part 1Hematology, coagulation and acute-phase-proteins
Zusammenfassung
Kritisch kranke Hunde und Katzen zeigen häufig komplexe Veränderungen mehrerer Organsysteme sowie systemische Entzündungsreaktionen und Infektionen. Eine strukturierte Herangehensweise an die Diagnostik dieser Patienten ist essenziell, um relevante Abweichungen frühzeitig zu erkennen und gezielt therapieren zu können. Ein etabliertes Hilfsmittel hierfür stellt das sogenannte „Rule of 20“-Schema dar, das eine systematische Erfassung zentraler klinischer und labordiagnostischer Parameter ermöglicht. Ziel des vorliegenden Übersichtsartikels ist es, einen praxisorientierten Überblick über die wichtigsten labordiagnostischen Tests sowie deren häufigsten Befunde bei kritisch kranken Hunden und Katzen zu geben.
Teil 1 dieses zweiteiligen Übersichtsartikels befasst sich mit zentralen hämatologischen Parametern bei intensivmedizinisch betreuten Kleintierpatienten. Im Fokus stehen Hämatokrit, Leukozyten- und Thrombozytenzahl sowie häufige Veränderungen wie Anämie, Polyzythämie, Leukozytose und Thrombozytopenie. Zudem werden Störungen der Hämostase im Sinne einer Hypo- oder Hyperkoagulabilität diskutiert. Zur Diagnostik systemischer Entzündungsreaktionen sowie Infektionen werden die Bedeutung von Akute-Phase-Proteinen und mikrobiologischer Untersuchungen dargestellt. Zudem werden myokardiale Marker als Hinweis auf infektiöse Myokardschäden, wie sie bei Sepsis auftreten können besprochen.
Abstract
Critically ill dogs and cats commonly present with a dysfunction of multiple organ systems, systemic inflammatory response, and infection. The “Rule of 20” scheme provides a structured framework to systematically assess these changes, including numerous laboratory diagnostics. This two-part review article summarizes key laboratory tests and their most frequent alterations in critically ill dogs and cats.
Part one focuses on hematologic tests, especially the parameters hematocrit, leukocyte count, and platelet count, with common alterations in critically ill patients including anemia, polycythemia, leukocytosis. In addition, changes in the coagulation system, such as hypo- or hypercoagulability, can frequently occur in critically ill patients, therefore these are also discussed. To support the diagnosis of systemic inflammation and infections, the utility of acute-phase-protein analysis and bacteriological examinations is discussed. In addition, myocardial markers are considered as indicators of myocardial injury, as they may occur in systemic inflammatory response and sepsis.
Schlüsselwörter
Kritisch kranke Hunde und Katzen - rule of 20 - Survival Prediction Index - Anämie - Gerinnungsstörungen - systemisches Entzündungsreaktionssyndrom - myokardiale MarkerKeywords
Critically ill dogs and cats - rule of 20 - Survival Prediction Index - anemia - coagulation disorders - systemic inflammatory response syndrome - myocardial markersPublikationsverlauf
Eingereicht: 26. Mai 2025
Angenommen: 31. Juli 2025
Artikel online veröffentlicht:
02. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kirby R. An introduction to SIRS and the Rule of 20. In Monitoring and Intervention for the Critically Ill Small Animal 2016; 1-8
- 2 Hayes G, Mathews K, Doig G. et al. The acute patient physiologic and laboratory evaluation (APPLE) score: a severity of illness stratification system for hospitalized dogs. J Vet Intern Med 2010; 24: 1034-1047
- 3 Hayes G, Mathews K, Doig G. et al. The Feline Acute Patient Physiologic and Laboratory Evaluation (Feline APPLE) Score: a severity of illness stratification system for hospitalized cats. J Vet Intern Med 2011; 25: 26-38
- 4 King LG, Wohl JS, Manning AM. et al. Evaluation of the survival prediction index as a model of risk stratification for clinical research in dogs admitted to intensive care units at four locations. Am J Vet Res 2001; 62: 948-954
- 5 Linklater A, Higgs V. Red blood cells and hemoglobin. In Monitoring and Intervention for the Critically Ill Small Animal 2016; 157-176
- 6 Yavorkovsky LL. Mean corpuscular volume, hematocrit and polycythemia. Hematology 2021; 26: 881-884
- 7 Goggs R, Blais MC, Brainard BM. et al. American College of Veterinary Emergency and Critical Care (ACVECC) Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE) guidelines: Small animal. J Vet Emerg Crit Care (San Antonio) 2019; 29: 12-36
- 8 G G, K T, H A et al. The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination. Int J Blood Res Disord 2015; 2: 012
- 9 Hartmann K. Rule-Outs für die Kleintiermedizin. Hannover: Schlütersche;; 2021
- 10 Cowgill ES, Neel JA, Grindem CB. Clinical application of reticulocyte counts in dogs and cats. Veterinary Clinics: Small Animal Practice 2003; 33: 1223-1244
- 11 Kim YR, Yee M, Metha S. et al. Simultaneous differentiation and quantitation of erythroblasts and white blood cells on a high throughput clinical haematology analyser. Clinical & Laboratory Haematology 1998; 20: 21-29
- 12 Cho A, Bae H, Kim Y. et al. Nucleated red blood cells for characterization of systemic inflammatory response syndrome in dogs. Journal of Veterinary Internal Medicine 2025; 39: e17246
- 13 Moretti P, Giordano A, Stefanello D. et al. Nucleated erythrocytes in blood smears of dogs undergoing chemotherapy. Vet Comp Oncol 2017; 15: 215-225
- 14 Fish EJ, Hansen SC, Spangler EA. et al. Retrospective evaluation of serum/plasma iron, red blood cell distribution width, and nucleated red blood cells in dogs with acute trauma (2009–2015): 129 cases. J Vet Emerg Crit Care (San Antonio) 2019; 29: 521-527
- 15 Pierini A, Gori E, Lippi I. et al. Neutrophil-to-lymphocyte ratio, nucleated red blood cells and erythrocyte abnormalities in canine systemic inflammatory response syndrome. Res Vet Sci 2019; 126: 150-154
- 16 Aroch I, Segev G, Loeb E. et al. Peripheral nucleated red blood cells as a prognostic indicator in heatstroke in dogs. J Vet Intern Med 2009; 23: 544-551
- 17 Müller M, Dörfelt R, Hamacher L. et al. Association of nucleated red blood cells with mortality in critically ill dogs. Vet Rec 2014; 175: 508
- 18 Dörfelt R, Pabst K, Hartmann K. Nucleated red blood cells in critically ill cats. J Fel Med Surg. 2025 in press.
- 19 Buseman M, Blong AE, Yuan L. et al. Retrospective evaluation of admission total plasma protein as a predictor of red blood cell transfusion requirement in dogs diagnosed with traumatic and nontraumatic hemoabdomen: 90 dogs (2009-2019). J Vet Emerg Crit Care (San Antonio) 2024; 34: 76-80
- 20 Garden OA, Kidd L, Mexas AM. et al. ACVIM consensus statement on the diagnosis of immune-mediated hemolytic anemia in dogs and cats. J Vet Intern Med 2019; 33: 313-334
- 21 Paes G, Paepe D, Meyer E. et al. The use of the rapid osmotic fragility test as an additional test to diagnose canine immune-mediated haemolytic anaemia. Acta Vet Scand 2013; 55: 74
- 22 Geisen V, Hartmann K, Dörfelt R. Case series: Heinz body formation in 13 multimorbid dogs following metamizole administration. Front Vet Sci 2023; 10: 1183876
- 23 Lieser J, Schwedes C, Walter M. et al. Oxidative damage of canine erythrocytes after treatment with non-steroidal anti-inflammatory drugs. Tierarztl Prax Ausg K Kleintiere Heimtiere 2021; 49: 407-413
- 24 Yılmaz G, Ulutaş B. Investigation of Plasma Lactate Concentration in Anemic Dogs. Animal Health Production and Hygiene 2023; 12: 8-14
- 25 Dörfelt R. Untersuchungen zum Plasmalaktatspiegel auf seine Relevanz als Transfusionstrigger bei anämischen Hunden und Katzen Tierärztliche. Umschau 2011; 66: 29-33
- 26 Meyer HP, Slappendel RJ, Greydanus-van der Putten SW. Polycythaemia vera in a dog treated by repeated phlebotomies. Vet Q 1993; 15: 108-111
- 27 Diogo CC, Fabretti AK, Camassa JA. et al. Diagnosis and Treatment of Primary Erythrocytosis in a Dog: A Case Report. Top Companion Anim Med 2015; 30: 65-67
- 28 Haak CE. White blood cells, immune status, and antimicrobial stewardship. In Monitoring and Intervention for the Critically Ill Small Animal 2016; 247-266
- 29 Linklater A. Coagulation. In Monitoring and Intervention for the Critically Ill Small Animal 2016; 137-156
- 30 Bateman SW, Mathews KA, Abrams-Ogg AC. et al. Diagnosis of disseminated intravascular coagulation in dogs admitted to an intensive care unit. J Am Vet Med Assoc 1999; 215: 798-804
- 31 Bauer N, Moritz A. Coagulation response in dogs with and without systemic inflammatory response syndrome – preliminary results. Res Vet Sci 2013; 94: 122-131
- 32 Hopper K, Bateman S. An updated view of hemostasis: mechanisms of hemostatic dysfuntion associated with sepsis. Journal of Veterinary Emergency and Critical Care 2005; 15: 83-91
- 33 Smith SA. The cell-based model of coagulation. Journal of Veterinary Emergency and Critical Care 2009; 19: 3-10
- 34 Song J, Drobatz KJ, Silverstein DC. Retrospective evaluation of shortened prothrombin time or activated partial thromboplastin time for the diagnosis of hypercoagulability in dogs: 25 cases (2006-2011). J Vet Emerg Crit Care (San Antonio) 2016; 26: 398-405
- 35 Clarkin-Breslin RC, Chalifoux NV, Buriko Y. Standard tests of haemostasis do not predict elevated thromboelastographic maximum amplitude, an index of hypercoagulability, in sick dogs. Journal of Small Animal Practice 2024; 65: 783-788
- 36 Baird TN, Zersen KM, Guillaumin J. Point-of-care viscoelastic coagulation monitoring device shows promise for informing resuscitation strategies in a canine hemorrhagic shock model. American Journal of Veterinary Research 2025; 86: ajvr.24.07.0196
- 37 Hartmann J, Hermelin D, Levy JH. Viscoelastic testing: an illustrated review of technology and clinical applications. Research and Practice in Thrombosis and Haemostasis 2023; 7
- 38 Goggs R, Brainard B, de Laforcade AM. et al. Partnership on Rotational ViscoElastic Test Standardization (PROVETS): evidence-based guidelines on rotational viscoelastic assays in veterinary medicine. J Vet Emerg Crit Care (San Antonio) 2014; 24: 1-22
- 39 Sigrist NE, Hofer-Inteeworn N, Jud Schefer R. et al. Hyperfibrinolysis and Hypofibrinogenemia Diagnosed With Rotational Thromboelastometry in Dogs Naturally Infected With Angiostrongylus vasorum. J Vet Intern Med 2017; 31: 1091-1099
- 40 Romão FG, Campos EF, Mattoso CR. et al. Hemostatic profile and thromboembolic risk in healthy dogs treated with prednisone: a randomized controlled trial. BMC Vet Res 2013; 9: 268
- 41 Nagahara T, Ohno K, Nagao I. et al. Changes in the coagulation parameters in dogs with protein-losing enteropathy between before and after treatment. J Vet Med Sci 2021; 83: 1295-1302
- 42 Barth SI, DeMonaco SM, Conner BJ. et al. Hypercoagulability identified in dogs with chronic enteropathy using a point-of-care viscoelastic assay. J Small Anim Pract 2025; 66: 365-371
- 43 Sotos KE, Goggs R, Stablein AP. et al. Increased thrombin activatable fibrinolysis inhibitor activity is associated with hypofibrinolysis in dogs with sepsis. Front Vet Sci 2023; 10: 1104602
- 44 Swann JW, Garden OA, Fellman CL. et al. ACVIM consensus statement on the treatment of immune-mediated hemolytic anemia in dogs. J Vet Intern Med 2019; 33: 1141-1172
- 45 Fischer H, Geisen V, Dorsch R. et al. Hemostatic and thromboelastographic parameters in dogs with renal azotemia. Vet World 2023; 16: 1214-1221
- 46 Gebhardt C, Hirschberger J, Rau S. et al. Use of C-reactive protein to predict outcome in dogs with systemic inflammatory response syndrome or sepsis. J Vet Emerg Crit Care (San Antonio) 2009; 19: 450-458
- 47 Goggs R, Robbins SN, LaLonde-Paul DM. et al. Serial analysis of blood biomarker concentrations in dogs with pneumonia, septic peritonitis, and pyometra. J Vet Intern Med 2022; 36: 549-564
- 48 Christensen MB, Langhorn R, Goddard A. et al. Comparison of serum amyloid A and C-reactive protein as diagnostic markers of systemic inflammation in dogs. Can Vet J 2014; 55: 161-168
- 49 Viitanen SJ, Laurila HP, Lilja-Maula LI. et al. Serum C-reactive protein as a diagnostic biomarker in dogs with bacterial respiratory diseases. J Vet Intern Med 2014; 28: 84-91
- 50 Degenhardt L, Dorsch R, Hartmann K. et al. Serum amyloid A in cats with renal azotemia. Vet World 2023; 16: 1673-1681
- 51 Sänger F, Unterer S, Werner M. et al. C-reactive protein as a tool for monitoring response to treatment in dogs with acute hemorrhagic diarrhea syndrome. Front Vet Sci 2022; 9: 1019700
- 52 de Lima GV, Ferreira FDS. N-terminal-pro brain natriuretic peptides in dogs and cats: A technical and clinical review. Vet World 2017; 10: 1072-1082
- 53 Langhorn R, Willesen JL. Cardiac Troponins in Dogs and Cats. J Vet Intern Med 2016; 30: 36-50
- 54 Biddick AA, Bacek LM, Fan S. et al. Association between cardiac troponin I concentrations and electrocardiographic abnormalities in dogs with blunt trauma. J Vet Emerg Crit Care (San Antonio) 2020; 30: 179-186
- 55 Hamacher L, Dörfelt R, Müller M. et al. Serum cardiac troponin I concentrations in dogs with systemic inflammatory response syndrome. J Vet Intern Med 2015; 29: 164-170
- 56 Wurtinger G, Henrich E, Hildebrandt N. et al. Assessment of a bedside test for N-terminal pro B-type natriuretic peptide (NT-proBNP) to differentiate cardiac from non-cardiac causes of pleural effusion in cats. BMC Vet Res 2017; 13: 394
- 57 Hezzell MJ, Rush JE, Humm K. et al. Differentiation of Cardiac from Noncardiac Pleural Effusions in Cats using Second-Generation Quantitative and Point-of-Care NT-proBNP Measurements. J Vet Intern Med 2016; 30: 536-542
- 58 Adamantos S, Brodbelt D, Moores AL. Prospective evaluation of complications associated with jugular venous catheter use in a veterinary hospital. J Small Anim Pract 2010; 51: 254-257
- 59 Simpson SE, Zersen KM. Incidence and type of peripheral intravenous catheter complications documented in hospitalised dogs. J Small Anim Pract 2023; 64: 130-135
- 60 Guzmán Ramos PJ, Fernández Pérez C, Ayllón Santiago T. et al. Incidence of and associated factors for bacterial colonization of intravenous catheters removed from dogs in response to clinical complications. J Vet Intern Med 2018; 32: 1084-1091
- 61 Ulrich S, Gottschalk C, Straubinger RK. et al. Acceleration of the identification of sepsis-inducing bacteria in cultures of dog and cat blood. J Small Anim Pract 2020; 61: 42-45