RSS-Feed abonnieren
DOI: 10.1055/a-2547-9482
Findet MeVO: intrakranielle Verschlüsse mittelgroßer Gefäße in der CTA erkennen

Die Entwicklung von Methoden zur Erkennung und Behandlung von intrakraniellen LVO (Large Vessel Occlusions) hat die Behandlung akuter ischämischer Schlaganfälle revolutioniert. Die laufenden Bemühungen konzentrieren sich nun auf intrakranielle MeVO (Medium Vessel Occlusions). Das Verständnis der relevanten Anatomie und der verschiedenen Erscheinungsformen von MeVO hilft Radiologen bei der Erkennung dieser Verschlüsse.
-
Die genaue und rechtzeitige radiologische Diagnose von MeVO im Kontext eines akuten Schlaganfalls ist eine wichtige Aufgabe für Radiologen.
-
In Studien umfasst die Definition einer MeVO die Segmente M2–M3 der A. cerebri media, die Segmente A2–A3 der A. cerebri anterior und die Segmente P2–P3 der A. cerebri posterior. Die Segmente A1 der A. cerebri anterior und P1 der A. cerebri posterior sind ebenfalls in der Mehrzahl der MeVO-Definitionen der Studien enthalten.
-
Die Identifizierung einer LVO mit modernen CTA-Protokollen ist relativ einfach. Die Erkennung von MeVO und DVO ist dagegen schwieriger: In früheren Studien wurde bis zu einem Drittel dieser Verschlüsse übersehen
-
Schwierigkeiten bei der Erkennung von LVO und MeVO werden in zunehmendem Maße dokumentiert und umfassen mangelhafte CTA-Technik, sog. Stumpfverschlüsse, anatomische Varianten, subokklusive Gerinnsel und kalzifizierte Gerinnsel.
-
Auch die Perfusions-CT kann bei der Identifizierung von MeVO helfen.
-
Die Mehrphasen-CTA ist ein weiteres fortschrittliches bildgebendes Verfahren, das nachweislich bei der Erkennung von MeVO hilfreich ist.
Publikationsverlauf
Artikel online veröffentlicht:
10. Juli 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Powers WJ, Rabinstein AA, Ackerson T. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke – a guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50: e344-e418
- 2 Wang JJ, Pelzl CE, Boltyenkov A. et al. Updated trends, disparities, and clinical impact of neuroimaging utilization in ischemic stroke in the medicare population: 2012 to 2019. J Am Coll Radiol 2022; 19: 854-865
- 3 Tu LH, Malhotra A, Venkatesh AK. et al. Head and neck CTA utilization: analysis of ordering frequency and nonroutine results communication, with focus on the 50 most common emergency department clinical presentations. AJR Am J Roentgenol 2022; 218: 544-551
- 4 Ospel JM, Cimflova P, Marko M. et al. Prevalence and outcomes of medium vessel occlusions with discrepant infarct patterns. Stroke 2020; 51: 2817-2824
- 5 Ospel JM, Menon BK, Demchuk AM. et al. Clinical course of acute ischemic stroke due to medium vessel occlusion with and without intravenous alteplase treatment. Stroke 2020; 51: 3232-3240
- 6 Liu M, Nasr D, Brinjikji W. The incidence of medium vessel occlusions: a population-based study. Front Neurol 2023; 14: 1225066
- 7 Fasen BACM, Heijboer RJJ, Hulsmans FH. et al. CT angiography in evaluating large-vessel occlusion in acute anterior circulation ischemic stroke: factors associated with diagnostic error in clinical practice. AJNR Am J Neuroradiol 2020; 41: 607-611
- 8 Duvekot MHC, van Es ACGM, Venema E. et al. PRESTO Investigators. Accuracy of CTA evaluations in daily clinical practice for large and medium vessel occlusion detection in suspected stroke patients. Eur Stroke J 2021; 6: 357-366
- 9 Menon BK, Hill MD, Davalos A. et al. Efficacy of endovascular thrombectomy in patients with M2 segment middle cerebral artery occlusions: meta-analysis of data from the HERMES collaboration. J Neurointerv Surg 2019; 11: 1065-1069
- 10 Sarraj A, Parsons M, Bivard A. et al. SELECT Investigators, EXTEND-IA Investigators, EXTEND-IA TNK Investigators, EXTEND-IA TNK Part II Investigators and INSPIRE Study Group. Endovascular thrombectomy versus medical management in isolated M2 occlusions: pooled patient-level analysis from the EXTEND-IA trials, INSPIRE, and SELECT studies. Ann Neurol 2022; 91: 629-639
- 11 Singh N, Kashani N, Kappelhof M. et al. Willingness to randomize primary medium vessel occlusions for endovascular treatment. J Neuroradiol 2022; 49: 157-163
- 12 Bilgin C, Hardy N, Hutchison K. et al. First-line thrombectomy strategy for distal and medium vessel occlusions: a systematic review. J Neurointerv Surg 2023; 15: 539-546
- 13 Ospel JM, Nguyen TN, Jadhav AP. et al. Endovascular treatment of medium vessel occlusion stroke. Stroke 2024; 55: 769-778
- 14 Ospel JM, Goyal M. A review of endovascular treatment for medium vessel occlusion stroke. J Neurointerv Surg 2021; 13: 623-630
- 15 Fisher E. Die Lagerbweichungen der vorderen Hirnarterie im Gefäßbild. Zentralbl Neurochir 1938; 3: 300-312
- 16 Rhoton Jr AL. The supratentorial arteries. Neurosurgery 2002; 51: S53-S120
- 17 Khatri R, Qureshi MA, Chaudhry MRA. et al. The angiographic anatomy of the sphenoidal segment of the middle cerebral artery and its relevance in mechanical thrombectomy. Intervent Neurol 2020; 8: 231-241
- 18 Shapiro M, Raz E, Nossek E. et al. Neuroanatomy of the middle cerebral artery: implications for thrombectomy. J Neurointerv Surg 2020; 12: 768-773
- 19 Roy S. M1, M2: time to bid adieu!. Stroke 2023; 3: e000401
- 20 Saver JL, Chapot R, Agid R. et al. Distal Thrombectomy Summit Group. Thrombectomy for distal, medium vessel occlusions: a consensus statement on present knowledge and promising directions. Stroke 2020; 51: 2872-2884 [Published correction appears in Stroke 2020; 51 (10): e296]
- 21 Goyal M, Kappelhof M, McDonough R. et al. Secondary medium vessel occlusions: when clots move north. Stroke 2021; 52: 1147-1153
- 22 van Laar PJ, Hendrikse J, Golay X. et al. In vivo flow territory mapping of major brain feeding arteries. Neuroimage 2006; 29: 136-144
- 23 Kim DE, Park JH, Schellingerhout D. et al. Mapping the supratentorial cerebral arterial territories using 1160 large artery infarcts. JAMA Neurol 2019; 76: 72-80
- 24 Liu CF, Hsu J, Xu X. et al. Digital 3D brain MRI arterial territories atlas. Sci Data 2023; 10: 74
- 25 Bang OY, Saver JL, Buck BH. et al. UCLA Collateral Investigators. Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 2008; 79: 625-629
- 26 American College of Radiology. ACR-ASNR-SPR practice parameter for the performance and interpretation of cervicocerebral computed tomography angiography (CTA) (2020). Zugriff am 31. März 2025 unter: https://gravitas.acr.org/PPTS/GetDocumentView?docId=72+&releaseId=2
- 27 Yuan D, Li L, Zhang Y. et al. Image quality improvement in head and neck CT angiography: individualized post-trigger delay versus fixed delay. Eur J Radiol 2023; 168: 111142
- 28 Kellner E, Rau A, Demerath T. et al. Contrast bolus interference in a multimodal CT stroke protocol. AJNR Am J Neuroradiol 2021; 42: 1807-1814
- 29 Goyal M, Menon BK, Krings T. et al. What constitutes the M1 segment of the middle cerebral artery?. J Neurointerv Surg 2016; 8: 1273-1277
- 30 Uz A. The segmentation of the posterior cerebral artery: a microsurgical anatomic study. Neurosurg Rev 2019; 42: 155-161
- 31 Zeal AA, Rhoton Jr AL. Microsurgical anatomy of the posterior cerebral artery. J Neurosurg 1978; 48: 534-559
- 32 Guilliams KP, Gupta N, Srinivasan S. et al. MR imaging differences in the circle of Willis between healthy children and adults. AJNR Am J Neuroradiol 2021; 42: 2062-2069
- 33 Okahara M, Kiyosue H, Mori H. et al. Anatomic variations of the cerebral arteries and their embryology: a pictorial review. Eur Radiol 2002; 12: 2548-2561
- 34 Erdem A, Yaşargil G, Roth P. Microsurgical anatomy of the hippocampal arteries. J Neurosurg 1993; 79: 256-265
- 35 Spallazzi M, Dobisch L, Becke A. et al. Hippocampal vascularization patterns: a high-resolution 7 Tesla time-of-flight magnetic resonance angiography study. Neuro Image Clin 2019; 21: 101609
- 36 Perlmutter D, Rhoton Jr AL. Microsurgical anatomy of the distal anterior cerebral artery. J Neurosurg 1978; 49: 204-228
- 37 Bonasia S, Robert T, Bojanowski MW. Embryology, anatomy, and variations of the anterior cerebral artery. Anatomy of cranial arteries, embryology and variants. Cham, Switzerland: Cham Springer; 2023
- 38 Uchino A, Nomiyama K, Takase Y. et al. Anterior cerebral artery variations detected by MR angiography. Neuroradiology 2006; 48: 647-652
- 39 Sarraj A, Hassan AE, Abraham MG. et al. SELECT2 Investigators. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med 2023; 388: 1259-1271
- 40 Huo X, Ma G, Tong X. et al. ANGEL-ASPECT Investigators. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med 2023; 388: 1272-1283
- 41 Yoshimura S, Sakai N, Yamagami H. et al. Endovascular therapy for acute stroke with a large ischemic region. N Engl J Med 2022; 386: 1303-1313
- 42 Peerlings D, de Jong HWAM, Bennink E. et al. Spatial CT perfusion data helpful in automatically locating vessel occlusions for acute ischemic stroke patients. Front Neurol 2023; 14: 1136232
- 43 Bathla G, Pillenahalli Maheshwarappa R, Soni N. et al. CT perfusion maps improve detection of M2-MCA occlusions in acute ischemic stroke. J Stroke Cerebrovasc Dis 2022; 31: 106473
- 44 Amukotuwa SA, Wu A, Zhou K. et al. Distal medium vessel occlusions can be accurately and rapidly detected using Tmax maps. Stroke 2021; 52: 3308-3317
- 45 Alotaibi FF, Alshahrani A, Mohamed G. et al. Diagnostic accuracy of large and medium vessel occlusions in acute stroke imaging by neurology residents and stroke fellows: a comparison of CT angiography alone and CT angiography with CT perfusion. Eur Stroke J 2024; 9: 356-365
- 46 Chung CY, Hu R, Peterson RB. et al. Automated processing of head CT perfusion imaging for ischemic stroke triage: a practical guide to quality assurance and interpretation. AJR Am J Roentgenol 2021; 217: 1401-1416
- 47 McDonough RV, Qiu W, Ospel JM. et al. Multiphase CTA-derived tissue maps aid in detection of medium vessel occlusions. Neuroradiology 2022; 64: 887-896
- 48 Ospel JM, Bala F, McDonough RV. et al. Interrater agreement and detection accuracy for medium-vessel occlusions using single-phase and multiphase CT angiography. AJNR Am J Neuroradiol 2022; 43: 93-97
- 49 Menon BK, d’Esterre CD, Qazi EM. et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015; 275: 510-520
- 50 Benali F, Zhang J, Nayem Pinky N. et al. Validation of a novel multiphase CTA perfusion tool compared to CTP in patients with suspected acute ischemic stroke. Stroke 2023; 3: e000811
- 51 Chung KJ, Pandey SK, Khaw AV. et al. Multiphase CT angiography perfusion maps for predicting target mismatch and ischemic lesion volumes. Sci Rep 2023; 13: 21976
- 52 Ospel JM, Volny O, Qiu W. et al. Displaying multiphase CT angiography using a time-variant color map: practical considerations and potential applications in patients with acute stroke. AJNR Am J Neuroradiol 2020; 41: 200-205
- 53 Yoshida M, Nakaura T, Sentaro T. et al. Prospective comparison of 70-kVp single-energy CT versus dual-energy CT: Which is more suitable for CT angiography with low contrast media dosage?. Acad Radiol 2020; 27: e116-e122
- 54 Noda Y, Nakamura F, Kawai N. et al. Optimized bolus threshold for dual-energy CT angiography with monoenergetic images: a randomized clinical trial. Radiology 2021; 300: 615-623
- 55 El Naamani K, Musmar B, Gupta N. et al. The artificial intelligence revolution in stroke care: a decade of scientific evidence in review. World Neurosurg 2024; 184: 15-22
- 56 Shlobin NA, Baig AA, Waqas M. et al. Artificial intelligence for large-vessel occlusion stroke: a systematic review. World Neurosurg 2022; 159: 207e1-220e1
- 57 Martinez-Gutierrez JC, Kim Y, Salazar-Marioni S. et al. Automated large vessel occlusion detection software and thrombectomy treatment times: a cluster randomized clinical trial. JAMA Neurol 2023; 80: 1182-1190