RSS-Feed abonnieren
DOI: 10.1055/a-2537-6205
VKB-Verletzungen im Kindes- und Jugendalter
Paediatric and Adolescent ACL InjuriesAutor*innen
Zusammenfassung
Kinder mit offenen Wachstumsfugen können nicht wie „kleine Erwachsene“ betrachtet oder behandelt werden. Das Verständnis des kindlichen Kniegelenkes und der anatomischen, hormonellen und neuromuskulären Veränderungen im Rahmen des Wachstums bzw. der Entwicklung ist einer der Schlüsselfaktoren für die Diagnose, die Wahl der Therapie und die Nachsorge bei skelettunreifen Patienten mit einer Verletzung des vorderen Kreuzbandes (VKB). Die zügige und korrekte Diagnose und Behandlung dieser VKB-Verletzungen sind entscheidend für den Schutz der langfristigen Integrität des kindlichen Kniegelenks, wobei der Behandlungsverlauf regelmäßig neu bewertet werden muss, um die Therapie individuell auf jeden einzelnen Patienten abzustimmen. Im Falle einer operativen Versorgung muss die Operationstechnik an die offenen Wachstumsfugen angepasst werden. Bei Adoleszenten und Jugendlichen nach Fugenverschluss ist die Sachlage derart verändert, dass im Falle einer operativen Versorgung die OP-Technik zwar identisch zu erwachsenen Patienten sein kann, bei dieser Alterskategorie aber mit einer extrem hohen Rate an Zweitverletzungen (bis zu 30 % ipsilaterale Re-Rupturen oder kontralaterale Erstrupturen) zu rechnen ist. Ziel des vorliegenden Beitrags ist es den aktuellen Kenntnisstand zu kindlichen und jugendlichen VKB-Verletzungen mit ihren Herausforderungen in der Diagnosestellung und der Behandlung darzustellen, wobei ein besonderes Augenmerk auch auf Begleitverletzungen gelegt wird.
Abstract
Children with open growth plates should not simply be regarded or managed as “small adults”. A thorough understanding of the paediatric knee and its growth, along with the anatomical, hormonal, and neuromuscular changes occurring in children during maturation, is one of the key factors in the diagnosis, decision-making, and monitoring of skeletally immature patients with anterior cruciate ligament (ACL) injuries. Timely and accurate diagnosis and treatment of these ACL injuries are crucial to protecting the long-term integrity of the child’s knee with regular reassessments being required to provide each individual patient with the best possible care. In the case of surgical treatment, the surgical technique must be adapted to the open growth plates. Once the growth plates have closed in adolescents and teenagers, surgery can be performed using adult techniques. However, in this age group, an extremely high rate of recurrent injury must be expected (up to 30% ipsilateral re-ruptures or contralateral primary ruptures). The aim of this article is to present the current understanding of paediatric and adolescent ACL injuries, including challenges in their diagnosis and treatment with a particular focus on associated injuries.
Publikationsverlauf
Eingereicht: 16. Oktober 2024
Angenommen nach Revision: 28. Mai 2025
Artikel online veröffentlicht:
22. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Shaw L, Finch CF. Trends in Pediatric and Adolescent Anterior Cruciate Ligament Injuries in Victoria, Australia 2005–2015. Int J Environ Res Public Health 2017; 14
- 2 Werner BC, Yang S, Looney AM. et al. Trends in Pediatric and Adolescent Anterior Cruciate Ligament Injury and Reconstruction. J Pediatr Orthop 2016; 36: 447-452
- 3 Nogaro MC, Abram SGF, Alvand A. et al. Paediatric and adolescent anterior cruciate ligament reconstruction surgery. Bone Joint J 2020; 102-B: 239-245
- 4 Dekker TJ, Godin JA, Dale KM. et al. Return to Sport After Pediatric Anterior Cruciate Ligament Reconstruction and Its Effect on Subsequent Anterior Cruciate Ligament Injury. J Bone Joint Surg Am 2017; 99: 897-904
- 5 Paterno MV, Rauh MJ, Schmitt LC. et al. Incidence of Second ACL Injuries 2 Years After Primary ACL Reconstruction and Return to Sport. Am J Sports Med 2014; 42: 1567-1573
- 6 Patel AD, Bullock GS, Wrigley J. et al. Does sex affect second ACL injury risk? A systematic review with meta-analysis. Br J Sports Med 2021; 55: 873-882
- 7 Wiggins AJ, Grandhi RK, Schneider DK. et al. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am J Sports Med 2016; 44: 1861-1876
- 8 Frosch KH, Stengel D, Brodhun T. et al. Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy 2010; 26: 1539-1550
- 9 Ardern CL, Ekas G. International Olympic Committee Pediatric ACLICG. et al. 2018 International Olympic Committee Consensus Statement on Prevention, Diagnosis, and Management of Pediatric Anterior Cruciate Ligament Injuries. Orthop J Sports Med 2018; 6: 2325967118759953
- 10 Anderson AF, Anderson CN. Correlation of meniscal and articular cartilage injuries in children and adolescents with timing of anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43: 275-281
- 11 Baxter MP. Assessment of normal pediatric knee ligament laxity using the genucom. J Pediatr Orthop 1988; 8: 546-550
- 12 Flynn JM, Mackenzie W, Kolstad K. et al. Objective evaluation of knee laxity in children. J Pediatr Orthop 2000; 20: 259-263
- 13 Hamrin Senorski E, Seil R, Svantesson E. et al. “I never made it to the pros...” Return to sport and becoming an elite athlete after pediatric and adolescent anterior cruciate ligament injury-Current evidence and future directions. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1011-1018
- 14 Gicquel P, Giacomelli MC, Karger C. et al. Développement embryonnaire et croissance normale du genou. Revue de Chirurgie Orthopédique et Réparatrice de lʼAppareil Moteur 2007; 93: 100-102
- 15 Herring JA, Tachdjian M. Pediatric orthopaedics. Benign Musculoskeletal Tumours 2002.
- 16 Vaquero J, Vidal C, Cubillo A. Intra-articular traumatic disorders of the knee in children and adolescents. Clin Orthop Relat Res 2005; 97-106
- 17 Chotel F, Raux S, Accadbled F. et al. Cartilaginous tibial eminence fractures in children: which recommendations for management of this new entity?. Knee Surg Sports Traumatol Arthrosc 2016; 24: 688-696
- 18 Chotel F, Seil R, Greiner P. et al. The difficult diagnosis of cartilaginous tibial eminence fractures in young children. Knee Surg Sports Traumatol Arthrosc 2014; 22: 1511-1516
- 19 Shin YW, Uppstrom TJ, Haskel JD. et al. The tibial eminence fracture in skeletally immature patients. Curr Opin Pediatr 2015; 27: 50-57
- 20 Meyers MH, McKeever FM. Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg Am 1970; 52: 1677-1684
- 21 Zaricznyj B. Avulsion fracture of the tibial eminence: treatment by open reduction and pinning. J Bone Joint Surg Am 1977; 59: 1111-1114
- 22 Kooy C, Jakobsen RB, Fenstad AM. et al. Major Increase in Incidence of Pediatric ACL Reconstructions From 2005 to 2021: A Study From the Norwegian Knee Ligament Register. Am J Sports Med 2023; 51: 2891-2899
- 23 Zbrojkiewicz D, Vertullo C, Grayson JE. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust 2018; 208: 354-358
- 24 Weitz FK, Sillanpaa PJ, Mattila VM. The incidence of paediatric ACL injury is increasing in Finland. Knee Surg Sports Traumatol Arthrosc 2020; 28: 363-368
- 25 Crotti M, Heering T, Lander N. et al. Extrinsic Risk Factors for Primary Noncontact Anterior Cruciate Ligament Injury in Adolescents Aged between 14 and 18 years: A Systematic Review. Sports Med 2024; 54: 875-894
- 26 Ramachandran AK, Pedley JS, Moeskops S. et al. Changes in Lower Limb Biomechanics Across Various Stages of Maturation and Implications for ACL Injury Risk in Female Athletes: a Systematic Review. Sports Med 2024; 54: 1851-1876
- 27 Bram JT, Pascual-Leone N, Patel NM. et al. Do Pediatric Patients With Anterior Cruciate Ligament Tears Have a Higher Rate of Familial Anterior Cruciate Ligament Injury?. Orthop J Sports Med 2020; 8: 2325967120959665
- 28 Bloom DA, Wolfert AJ, Michalowitz A. et al. ACL Injuries Arenʼt Just for Girls: The Role of Age in Predicting Pediatric ACL Injury. Sports Health 2020; 12: 559-563
- 29 Wojtys EM, Huston LJ, Lindenfeld TN. et al. Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. Am J Sports Med 1998; 26: 614-619
- 30 Dare DM, Fabricant PD, McCarthy MM. et al. Increased Lateral Tibial Slope Is a Risk Factor for Pediatric Anterior Cruciate Ligament Injury: An MRI-Based Case-Control Study of 152 Patients. Am J Sports Med 2015; 43: 1632-1639
- 31 Shultz SJ, Nguyen AD, Schmitz RJ. Differences in lower extremity anatomical and postural characteristics in males and females between maturation groups. J Orthop Sports Phys Ther 2008; 38: 137-149
- 32 Yellin JL, Parisien RL, Talathi NS. et al. Narrow Notch Width is a Risk Factor for Anterior Cruciate Ligament Injury in the Pediatric Population: A Multicenter Study. Arthrosc Sports Med Rehabil 2021; 3: e823-e828
- 33 Gilchrist J, Mandelbaum BR, Melancon H. et al. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 2008; 36: 1476-1483
- 34 Mouton C, Moksnes H, Janssen R. et al. Preliminary experience of an international orthopaedic registry: the ESSKA Paediatric Anterior Cruciate Ligament Initiative (PAMI) registry. J Exp Orthop 2021; 8: 45
- 35 Gornitzky AL, Lott A, Yellin JL. et al. Sport-Specific Yearly Risk and Incidence of Anterior Cruciate Ligament Tears in High School Athletes: A Systematic Review and Meta-analysis. Am J Sports Med 2016; 44: 2716-2723
- 36 Matava MJ, Gibian JT, Hutchinson LE. et al. Factors Associated With Meniscal and Articular Cartilage Injury in the PLUTO Cohort. Am J Sports Med 2023; 51: 1497-1505
- 37 Dumont GD, Hogue GD, Padalecki JR. et al. Meniscal and chondral injuries associated with pediatric anterior cruciate ligament tears: relationship of treatment time and patient-specific factors. Am J Sports Med 2012; 40: 2128-2133
- 38 Vavken P, Tepolt FA, Kocher MS. Concurrent Meniscal and Chondral Injuries in Pediatric and Adolescent Patients Undergoing ACL Reconstruction. J Pediatr Orthop 2018; 38: 105-109
- 39 Lawrence JT, Argawal N, Ganley TJ. Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment?. Am J Sports Med 2011; 39: 2582-2587
- 40 Ekas GR, Laane MM, Larmo A. et al. Knee Pathology in Young Adults After Pediatric Anterior Cruciate Ligament Injury: A Prospective Case Series of 47 Patients With a Mean 9.5-Year Follow-up. Am J Sports Med 2019; 47: 1557-1566
- 41 Stanitski CL, Harvell JC, Fu F. Observations on acute knee hemarthrosis in children and adolescents. J Pediatr Orthop 1993; 13: 506-510
- 42 Dietvorst M, van der Steen MCM, Reijman M. et al. Diagnostic values of history taking, physical examination and KT-1000 arthrometer for suspect anterior cruciate ligament injuries in children and adolescents: a prospective diagnostic study. BMC Musculoskelet Disord 2022; 23: 710
- 43 Lee K, Siegel MJ, Lau DM. et al. Anterior cruciate ligament tears: MR imaging-based diagnosis in a pediatric population. Radiology 1999; 213: 697-704
- 44 Schub DL, Altahawi FAFM. et al. Accuracy of 3-Tesla magnetic resonance imaging for the diagnosis of intra-articular knee injuries in children and teenagers. J Pediatr Orthop 2012; 32: 765-769
- 45 Kocher MS, DiCanzio J, Zurakowski D. et al. Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intraarticular knee disorders in children and adolescents. Am J Sports Med 2001; 29: 292-296
- 46 Pyle SI, Greulich WW. Radiographic atlas of skeletal development of the hand and wrist: Stanford University Press; 1959.
- 47 Pennock AT, Bomar JD, Manning JD. The Creation and Validation of a Knee Bone Age Atlas Utilizing MRI. J Bone Joint Surg Am 2018; 100: e20
- 48 Ording Muller LS, Adolfsson J, Forsberg L. et al. Magnetic resonance imaging of the knee for chronological age estimation-a systematic review. Eur Radiol 2023; 33: 5258-5268
- 49 Escott BG, Ravi B, Weathermon AC. et al. EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Joint Surg Am 2013; 95: e1831-1837
- 50 Moksnes H, Engebretsen L, Risberg MA. The current evidence for treatment of ACL injuries in children is low: a systematic review. J Bone Joint Surg Am 2012; 94: 1112-1119
- 51 Woods GW, OʼConnor DP. Delayed anterior cruciate ligament reconstruction in adolescents with open physes. Am J Sports Med 2004; 32: 201-210
- 52 Funahashi KM, Moksnes H, Maletis GB. et al. Anterior cruciate ligament injuries in adolescents with open physis: effect of recurrent injury and surgical delay on meniscal and cartilage injuries. Am J Sports Med 2014; 42: 1068-1073
- 53 James EW, Dawkins BJ, Schachne JM. et al. Early Operative Versus Delayed Operative Versus Nonoperative Treatment of Pediatric and Adolescent Anterior Cruciate Ligament Injuries: A Systematic Review and Meta-analysis. Am J Sports Med 2021; 49: 4008-4017
- 54 Ramski DE, Kanj WW, Franklin CC. et al. Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med 2014; 42: 2769-2776
- 55 Kay J, Memon M, Shah A. et al. Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3738-3753
- 56 Cucchi D, Mouton C, Dor J. et al. Pediatric ACL Tear. Knee Arthroscopy: A Case Repository 2019. 3.
- 57 Oronowicz J, Mouton C, Pioger C. et al. The posterior cruciate ligament-posterior femoral cortex angle (PCL-PCA) and the lateral collateral ligament (LCL) sign are useful parameters to indicate the progression of knee decompensation over time after an ACL injury. Knee Surg Sports Traumatol Arthrosc 2023; 31: 5128-5136
- 58 Siboni R, Pioger C, Mouton C. et al. The posterior cruciate ligament-posterior femoral cortex angle: a reliable and accurate MRI method to quantify the buckling phenomenon of the PCL in ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc 2023; 31: 332-339
- 59 Macchiarola L, Jacquet C, Dor J. et al. Side-to-side anterior tibial translation on monopodal weightbearing radiographs as a sign of knee decompensation in ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc 2022; 30: 1691-1699
- 60 Chotel F, Seil R. Growth disturbances after transphyseal ACL reconstruction in skeletally immature patients: who is more at risk? Young child or adolescent?. J Pediatr Orthop 2013; 33: 585-586
- 61 Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. Surgical technique. J Bone Joint Surg Am 2006; 88 (Suppl. 01) 283-293
- 62 Micheli LJ, Rask B, Gerberg L. Anterior cruciate ligament reconstruction in patients who are prepubescent. Clin Orthop Relat Res 1999; 40-47
- 63 Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament in skeletally immature patients. A preliminary report. J Bone Joint Surg Am 2003; 85: 1255-1263
- 64 Kaeding CC, Flanigan D, Donaldson C. Surgical techniques and outcomes after anterior cruciate ligament reconstruction in preadolescent patients. Arthroscopy 2010; 26: 1530-1538
- 65 Moksnes H, Engebretsen L, Seil R. The ESSKA paediatric anterior cruciate ligament monitoring initiative. Knee Surg Sports Traumatol Arthrosc 2016; 24: 680-687
- 66 Seil R, Weitz FK, Pape D. Surgical-experimental principles of anterior cruciate ligament (ACL) reconstruction with open growth plates. J Exp Orthop 2015; 2: 11
- 67 Edwards TB, Greene CC, Baratta RV. et al. The effect of placing a tensioned graft across open growth plates. A gross and histologic analysis. J Bone Joint Surg Am 2001; 83: 725-734
- 68 Malatray M, Raux S, Peltier A. et al. Ramp lesions in ACL deficient knees in children and adolescent population: a high prevalence confirmed in intercondylar and posteromedial exploration. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1074-1079
- 69 Kopf S, Beaufils P, Hirschmann MT. et al. Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 2020; 28: 1177-1194
- 70 Al'Khafaji I, Devitt BM, Feller JA. The Modified Ellison Technique: A Distally Fixed Iliotibial Band Transfer for Lateral Extra-articular Augmentation of the Knee. Arthrosc Tech 2022; 11: e257-e262
- 71 Schlichte LM, Aitchison AH, Green DW. et al. Modified Lemaire Lateral Extra-articular Tenodesis in the Pediatric Patient: An Adjunct to Anterior Cruciate Ligament Reconstruction. Arthrosc Tech 2020; 9: e111-e116
- 72 Grindem H, Snyder-Mackler L, Moksnes H. et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 2016; 50: 804-808
- 73 Thorborg K, Krommes KK, Esteve E. et al. Effect of specific exercise-based football injury prevention programmes on the overall injury rate in football: a systematic review and meta-analysis of the FIFA 11 and 11+ programmes. Br J Sports Med 2017; 51: 562-571
- 74 Ortqvist M, Roos EM, Brostrom EW. et al. Development of the Knee Injury and Osteoarthritis Outcome Score for children (KOOS-Child): comprehensibility and content validity. Acta Orthop 2012; 83: 666-673
- 75 Kocher MS, Smith JT, Iversen MD. et al. Reliability, validity, and responsiveness of a modified International Knee Documentation Committee Subjective Knee Form (Pedi-IKDC) in children with knee disorders. Am J Sports Med 2011; 39: 933-939
- 76 Fabricant PD, Robles A, Downey-Zayas T. et al. Development and validation of a pediatric sports activity rating scale: the Hospital for Special Surgery Pediatric Functional Activity Brief Scale (HSS Pedi-FABS). Am J Sports Med 2013; 41: 2421-2429
