Simple use of Y-connector for proper positioning and contrast aspiration in biliary metal stent placement

Endoscopic biliary drainage for unresectable malignant hilar biliary obstruction often requires multiple metal stents, and stent-in-stent placement is an effective drainage method [1,2]. Although multiple stent placement requires more cholangiograms for proper positioning, post-endoscopic retrograde cholangiopancreatography (ERCP) cholangitis remains a concern. Moreover, the over-injection of contrast medium and residual contrast medium increase post-ERCP cholangitis [3–5]. To overcome these issues, we introduced a simple method using a Y-connector attached to an existing metal stent (Fig. 1).

A 70-year-old woman undergoing chemotherapy for intrahepatic cholangiocarcinoma after a previous cholecystitis-associated endoscopic ultrasound-guided gallbladder drainage presented with obstructive jaundice for hilar biliary obstruction. Enhanced computed tomography revealed bilateral intra-bile duct dilation (Fig. 2). Stent-in-stent placement was performed. The first metal stent was placed, and a guidewire was inserted through the mesh gap into the bile duct, where the second stent placement was intended. By this point, most of the contrast medium had leaked out, making the length of the stenosis and the target placement position difficult to determine (Fig. 3 a, b). A Y-connector (Access-9TM, Hemostasis Valve; SHEEN MAN Co., Ltd., Osaka, Japan) was attached to the proximal end of the guide-wire lumen of the second stent device. The stent was inserted into the bile duct through a guidewire using a Y-connector. Because contrast using the Y-connector enabled visualization of the stenosis, it was easy to determine the position of the stent. After stent placement, the stent device permits contrast medium aspiration with the guidewire in place to prevent cholangitis caused by the over-injection of contrast medium. This method allows stenting while confirming proper stent placement and prevents post-endoscopic retrograde cholangiopancreatography (ERCP) cholangitis by aspirating as much contrast as possible. Source: Davinch Medical Illustration Office.

Video 1 Video showing the simple use of the Y-connector for proper positioning and the prevention of post-endoscopic retrograde cholangiopancreatography cholangitis during biliary metal stent placement.
easily without switching to a catheter (▶Fig. 3d,e) (▶ Video 1). No post-ERCP cholangitis or elevated hepatobiliary enzyme levels were observed in this patient. The combination of the stent device and Y-connector is a convenient and an efficacious method for confirming the stent position and preventing post-ERCP cholangitis.

Endoscopy_UCTN_Code_TTT_1AR_2AZ

Acknowledgments

Division of Innovative Medicine for Hepatobiliary and Pancreatology is an endowment department, supported with an unrestricted grant from HITO Medical Center. We would like to thank Editage (www.editage.jp) for English language editing.

Conflict of Interest

The authors declare that they have no conflict of interest.

The authors

Kiyoyuki Kobayashi1,*, Hideki Kobara1,*, Takako Nomura2, Tomohiro Ogi1, Hideki Kamada1, Masafumi Ono1, Tsutomu Masaki2
1 Division of Innovative Medicine for Hepatobiliary and Pancreatology, Kagawa University, Faculty of Medicine, Kagawa, Japan
2 Department of Gastroenterology and Hepatology, HITO Medical Center, Ehime, Japan
3 Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Kagawa, Japan

Corresponding author

Kiyoyuki Kobayashi, MD, PhD
Division of Innovative Medicine for Hepatobiliary and Pancreatology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kita 1750-1, 761-0793 Kagawa, Japan
kobayashi.kiyoyuki@kagawa-u.ac.jp

References


Bibliography

Endoscopy 2024; 56: E23–E24
DOI 10.1055/a-2225-5570
ISSN 0013-726X
© 2024. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/}