Segmental quantification of hepatic lipid content based on volumetric MRI data in patients with suspected iron overload

Quantifizierung des segmentalen Lipidgehalts der Leber auf der Grundlage volumetrischer MRT-Daten bei Patienten mit Verdacht auf Eisenüberladung

Authors
Arthur P. Wunderlich1,2, Holger Cario3, Stephan Kannengeiβer4, Veronika Grunau1, Michael Götz2, Felix Hüttner2, Johanna Backhus5, Meinrad Beer1, Stefan Andreas Schmidt1

Affiliations
1 Department for Diagnostic and Interventional Radiology, Ulm University Medical Center, Ulm, Germany
2 Division for Experimental Radiology, Ulm University Medical Center, Ulm, Germany
3 Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
4 Magnetic Resonance Development, Siemens Healthcare AG, Erlangen, Germany
5 Clinic of Surgery, Ulm University Medical Center, Ulm, Germany
6 Department for Internal Medicine I – Gastroenterology, Ulm University Medical Center, Ulm, Germany

Key words
MR-imaging, hepatic MR-PDFF, NAFLD, liver iron overload, thalassemia

received 17.7.2023
accepted 27.10.2023
published online 11.12.2023

Bibliography
Fortschr Röntgenstr 2024; 196: 463–470
DOI 10.1055/a-2211-3199
ISSN 1438-9029
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Correspondence
Dr. Arthur P Wunderlich
Clinic for Diagnostic and Interventional Radiology, University Ulm Medical Centre, Albert-Einstein-Allee 23, 89070 Ulm, Germany
Tel.: +49/7 31/50 06 10 86
Fax: +49/7 31/50 06 11 08
arthur.wunderlich@uni-ulm.de

ABSTRACT

Purpose To investigate the segmental distribution of hepatic fat fraction, determined with MRI (MR proton density fat fraction, short MR-PDFF) in patients suspected of having liver iron overload.

Methods The liver of 44 patients examined with MRI using a 3D multi-echo gradient-echo sequence was segmented semi-automatically and subdivided into nine segments (segment 4 divided in 4a and 4b). Segmental fat content was determined on MR-PDFF maps. Whole-liver steatosis grades were compared to those found in individual segments. Segmental MR-PDFF differences were tested for statistical significance.

Results The most common diseases were thalassemia, various forms of anemia, and hereditary hemochromatosis. No patients suffered from fat metabolism disease. Iron overload was present in 37/44 (84 %) patients. For the whole liver, 22 patients showed a steatosis grade of 0, 21 patients were graded S1, and one patient had a steatosis grade of 2. The grade of steatosis was underestimated in 5 of 21 patients (24 %) in segment 8 and in 8 of 21 patients (38 %) in segment 7. Highly significant segmental MR-PDFF differences were detected with p<0.0001, e.g., comparing segment 2 to 5. Segments 1 to 3 had the highest fat content, segments 7 and 8 had the lowest.

Conclusion Our results suggest that the storage of fat in the liver is inhomogeneous, so that segment-wise differing fat concentrations were found. Fat distribution in patients with suspected hepatic iron overload was similar to living liver donors. However, it showed significant differences compared with the values published for NAFLD patients, which were less pronounced in the group with high average hepatic MR-PDFF values than in the group with normal lipid content. In patients suspected of having iron overload, segment 8, which is mainly targeted for biopsy, and segment 7 may underestimate steatosis grade.

Key Points:
- A volumetric analysis of 3D MRI data of patients with suspected hepatic iron overload yielded a markedly elevated MR proton density fat fraction (MR-PDFF) in hepatic segments 1 to 3.
- This hepatic fat distribution, observed for the whole patient cohort, is similar to healthy living liver donors.
Introduction

Liver fat content is highly variable in normal subjects and is known to increase in certain metabolic disorders. Using innovative MR sequences, liver fat content can be reliably determined. The so-called MR-based proton density fat fraction (MR-PDFF) has been established as a biomarker [1]. This parameter has been shown to correlate well with liver fat content determined by histology and MR spectroscopy [2]. Liver fat content is certainly of particular interest in metabolic diseases such as non-alcoholic fatty liver (NAFLD). In some of these syndromes, an elevated iron content is also observed, which requires a joint quantification of both substances [3]. Fat content was investigated not only for the whole liver but was also differentiated by segment [4, 5].

On the other hand, iron overload with iron accumulation mainly in the liver, but also in other organs, represents a major problem for patients with chronic anemia. Excess iron is caused by increased iron resorption, frequent blood transfusions, or a combination of both. Since iron overload and its complications can be prevented and treated with iron chelation, noninvasive iron monitoring is crucial for patient management. MRI is widely accepted as the tool for noninvasive liver iron quantification, reflecting the total body iron content. Recently, a three-dimensional multi-gradient echo (3D mGRE) sequence was developed enabling contiguous acquisition of the whole liver in a single breath hold, which offers the possibility of volumetric analysis [6]. Multiple echoes allow for combined quantification of fat and iron [2, 7].

Meanwhile, software solutions are available for semi-automatic liver segmentation including the option to optimize the automatically detected contour manually. One of these tools allows users to divide the liver into its anatomical segments on the basis of manually placed landmarks and to analyze individual segments separately. Using this method, segmental differences in hepatic iron overload, reflected by segmental R2* differences, have been found [8].

As fatty liver degeneration is frequently observed in the general population, it also affects patients with chronic anemia [9]. Deviating segmental fat fractions have been reported in fatty liver patients and living liver donors in single slice ROI-based analysis.
Mean values of MR-PDFF and R2* were restored for the whole liver to portal vein, and attachment of venous ligament to vena cava, apex, superficial venous ligament, attachment of venous ligament to hepatic vein, umbilical fissure, left portal bifurcation, left hepatic lobe.

The landmarks required by the software for the segment division of 9 segments with differentiation of segment 4 into 4a and 4b. Used the subdivision according to Couinaud/Bismuth with a total into segments using manually marked anatomical landmarks. We selected manually if necessary. Subsequently, the liver was subdivided into segments using automatically marked anatomical landmarks. We used the subdivision according to Couinaud/Bismuth with a total of 9 segments with differentiation of segment 4 into 4a and 4b. The landmarks required by the software for the segment division were: right portal bifurcation, inferior vena cava, right and middle hepatic vein, umbilical fissure, left portal bifurcation, left hepatic apex, superficial venous ligament, attachment of venous ligament to portal vein, and attachment of venous ligament to vena cava. Mean values of MR-PDFF and R2* were stored for the whole liver and for individual segments. A scatterplot of whole-liver MR-PDFF vs. R2* values was created and the correlation between these values was studied.

Lever steatosis was graded based on the whole-liver MR-PDFF values according to the recently proposed thresholds [11]. An evaluation was performed to determine whether assessment of single segments would over- or underestimate steatosis grade. Furthermore, the number of patients in whom segments 7 and 8 show lower MR-PDFF values than the average whole-liver MR-PDFF was assessed. Iron overload was addressed using the average whole-liver R2* value and a recently published calibration for the sequence was used [7].

PDFF values of the segments were normalized by dividing each segmental value by the PDFF value of the whole liver according to

\[
\text{rFF}_{\text{seg}} = \frac{\text{PDFF}_{\text{seg}}}{\text{PDFF}_{\text{Liv}}}
\]

where PDFF_{seg} denotes PDFF measured in a single segment, PDFF_{Liv} means PDFF averaged over the whole liver, and rFF_{seg} the relative PDFF value of a single segment.

Segmental PDFF and the normalized, or relative, PDFF values (rFF) were averaged segment by segment for all patients and tested for differences between the segments. This was performed for all patients together and for patients divided into two groups according to their average hepatic MR-PDFF value. The cutoff value was set to 6.5 %, a threshold value that is suitable to differentiate between normal and steatotic liver [11]. Furthermore, relative segmental values were studied for differences between patients solely with increased iron resorption like those with hereditary hemochromatosis, patients with chronic hemolytic anemia not receiving blood transfusions, and anemia patients requiring frequent blood transfusion.

All statistical analyses were done using SPSS software (version 27.0, IBM, Armonk/NY, USA). All variables were initially tested for normal distribution using the Shapiro-Wilk test. The relative values rFF of the individual segments were tested for statistically significant differences using analysis of variance with repeated measures (ANOVA) and Bonferroni correction. The test for variance homogeneity required for ANOVA was performed using Mauchly’s test followed by Greenhouse-Geisser’s epsilon factor correction.

Significance levels for statistical analyses were set to p < 0.05 for significant and p < 0.001 for highly significant differences.

Methods

After approval by the university’s ethics committee and according to the Declaration of Helsinki (last revision 2013, Fortaleza, Brazil), patients referred to our institution between May 2017 and April 2018 for noninvasive liver iron quantification were included after written informed consent of the patients and/or their parents. Participants were examined on a 1.5 T MRI scanner (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Germany) with a volumetric multi-gradient echo sequence (6 echoes, TR 1.2–9 ms) as previously published [8, 10]. The entire liver was acquired in a single breath hold with a field of view (FoV) of 400x300x224 mm³ at a matrix of 160x84x56 voxels and a voxel size of 2.5x2.5x4 mm³. Immediately after data acquisition, voxel-by-voxel PDFF and R2* values were obtained using a nonlinear multi-step fit process and stored as a parameter map [1].

Image quality was scored using a four-point Likert scale with 1 = excellent image quality, 2 = marginal artifacts not compromising liver diagnosis, 3 = image quality impaired by breathing and/or fat-water mismatch (so called swaps) and 4 = severe image artifacts. Patients in whom the liver was not completely covered, e.g., due to a different breathing position compared to the survey slices or because the liver was not completely depicted, and patients with poor image quality (Likert score 3 or 4) of the volumetric sequence were excluded from analysis.

Liver segmentation was performed using the Liverhealth software tool, a part of the Intellispace Portal (ISP, Philips, Hamburg, Germany) which was described previously [8, 10]. The liver contour on axial slices as well as coronal and sagittal reconstructions was checked after an initial automatic segmentation and corrected manually if necessary. Subsequently, the liver was subdivided into segments using manually marked anatomical landmarks. We used the subdivision according to Couinaud/Bismuth with a total of 9 segments with differentiation of segment 4 into 4a and 4b. The landmarks required by the software for the segment division were: right portal bifurcation, inferior vena cava, right and middle hepatic vein, umbilical fissure, left portal bifurcation, left hepatic apex, superficial venous ligament, attachment of venous ligament to portal vein, and attachment of venous ligament to vena cava. Mean values of MR-PDFF and R2* were stored for the whole liver and for individual segments. A scatterplot of whole-liver MR-PDFF vs. R2* values was created and the correlation between these values was studied.

Liver steatosis was graded based on the whole-liver MR-PDFF values according to the recently proposed thresholds [11]. An evaluation was performed to determine whether assessment of the two disease patterns most frequently observed in our patient cohort were transfusion-dependent thalassemia (n = 24) and Diamond-Blackfan anemia (n = 5). Other diseases and their frequency are shown in Table 1. Fig. 2 shows a dot plot of MR-PDFF vs. R2* with moderate correlation of both parameters.

Results

58 participants were examined in the chosen time interval. No patient had a known fat metabolism disease. The liver was imaged completely in all cases. 30/58 (52 %) of the studies were scored 1 for excellent image quality, and 14/58 (24 %) received a Likert score of 2. A total of 14/58 participants (24 %) had to be excluded, 10 received a score of 3 and 4 were scored 4. Therefore, 44 patients (24 m, 20 f, age 23.7 ± 13 years (mean ± SD), age range 4.1 to 60.6 years) were suitable for evaluation. ▶ Fig. 1 shows a color-coded MR-PDFF map overlaid on an anatomical image.

The two disease patterns most frequently observed in our patient cohort were transfusion-dependent thalassemia (n = 24) and Diamond-Blackfan anemia (n = 5). Other diseases and their frequency are shown in ▶ Table 1. ▶ Fig. 2 shows a dot plot of MR-PDFF vs. R2* with moderate correlation of both parameters.
Whole-liver MR-PDFF values ranged from 3.6% to 20%. For individual segments, we found a range of 2.9% to 21.1%. Average segmental MR-PDFF values for different patient groups are given in Table 2. Relative PDFF values were observed between 0.51 and 1.87.

All patients showed a lower segmental MR-PDFF compared to the average whole liver MR-PDFF in either segment 7 or 8. Reduced values were observed in 38/44 patients (86.4%) for segment 7 and in 37/44 patients (84.1%) for segment 8.

In 22 patients a steatosis grade of 0 (S0) was found (MR-PDFF < 6.5%), 21 were graded S1 (MR-PDFF 6.5–16.5%), and one patient was graded S2 (MR-PDFF 16.5–22%). No patient was graded S3 (MR-PDFF > 22%). In 11 of 22 patients (50%) graded S0, segment 2 showed an S1 grade, in 2 of 21 patients (9.5%) with whole-liver steatosis grade S1, segment 2 was graded S2. On the other hand, 5 of 21 patients (24%) with whole-liver grade S1 were graded S0 in segment 8. These five patients and three additional patients, i.e., a total of 8 of 21 (38%) were graded S0 in segment 7. Only two of 21 patients (9.5%) with whole-liver grade 1 were graded S0 in segment 5, and only one patient in the steatosis group S1 was graded S0 in segment 4a and another in segment 4b.

Liver iron overload was detected in 37/44 (84%) patients. Fig. 3 shows an overview of average rFF values of individual segments. Highly significant differences were found between segments 1 to 3 versus segments 4a-8. Also, highly significant differences occurred between segments 4a versus segments 7 and 8. Significant differences were also observed between segment 4b versus segments 5, 7, and 8, and between segment 5 versus 8 and segment 6 versus 7. The p-values of the segment-wise differences are shown in Table 3 for rFF and actual MR-PDFF.

Discussion

Liver fat content has been the subject of several studies, but, so far, mainly in patients with lipid metabolic diseases such as nonalcoholic fatty liver disease (NAFLD). Here, we investigated hepatic fat content in patients with hereditary hemochromatosis or anemia-associated iron overload. The resulting liver iron overload is measured by the transverse relaxation rate R2*. R2* distribution deviated from PDFF distribution: R2* slows in segment 1 and highest in segment 7 [8, 10]. Since relative segmental MR-PDFF values do not correspond to relative segmental R2* values, we conclude that our method determines these values independently from each other. Therefore, the observation that MR-PDFF correlates moderately to R2* is assumed to have physiologic or pathologic reasons.

A study in healthy living liver donors showed fat fractions comparable to those in our patients, i.e., highest fat content in seg-
ments 1–3, but with overall lower MR-PDFF values [4]. These observations suggest that fat distribution obviously depends on the individual condition, i.e., healthy persons or patients with suspected liver iron overload vs. patients with lipid metabolic diseases. In practice, this might be important when taking biopsies from patients with suspected iron overload in order to evaluate steatosis grade since the right liver lobe (segment 8) is mainly targeted. It might be helpful to target segment 5 instead, but this is associated with a higher risk of complications.

Increased fat storage in the right liver lobe compared to the left liver lobe, i.e., exactly the opposite as observed in the studied patient cohort, has already been reported for NAFLD patients in several papers, although mostly only whole liver lobes and not individual segments were examined [3, 12]. Studies investigating fat distribution using the Coinaud/Bismuth segmental subdivision in NAFLD patients found a lower fat content in segments 1–3 compared to the other segments [2, 5, 13]. This is remarkable since both conditions, iron overload as well as NAFLD, are associated with increased hepatic fat content. The fat content within the extended right lobe of the liver (segments 4 to 8) reported by these studies, however, are comparable to results observed in our patient population, i.e., highest in segment 4 and with a decreasing tendency toward segment 8 with basically similar MR-PDFF values. The comparison between patients with normal MR-PDFF < 6.5% and steatotic patients (MR-PDFF ≥ 6.5%) in our collective shows that with increasing hepatic fat content, fat tends to accumulate more in segments 5–8 compared to segments 1–3.

Patients in our cohort who did not receive blood transfusions suffered from excess iron due to increased iron resorption. The pattern of cellular iron distribution in the liver differs from that in patients with secondary transfusional iron overload for several reasons. This includes, e.g., the primary portal circulation after iron resorption and the high hepatocellular TfR2 expression [14]. Therefore, in hereditary hemochromatosis and non-transfusion-dependent anemias, iron primarily accumulates in hepatocytes, whereas in transfusional iron overload cells of the reticulo-histiocytic system including hepatic stellate cells are affected. In the group requiring blood transfusions, aged blood cells are metabolized by the hepatic reticulo-endothelial system and not by hepatocytes. Examining segmental MR-PDFF, probable effects of these differences are seen. However, it remains unclear why significant differences occur only in segments 4b and 7. Since our group without blood transfusions was small (n = 7), we regard this result as preliminary. The larger group receiving blood transfusions could be split up further into patients with additionally increased iron resorption (thalassemia) and iron overload predominantly caused by blood transfusion (sickle cell disease, Diamond-Blackfan anemia and other forms of anemia). Interestingly, despite segmental R2* values differing between these groups [8], there were no significant segmental MR-PDFF differences between the subgroups (data not shown).

Limitations
This study was conducted as a feasibility study on a rather small number of patients. In particular, the patient group with solely increased iron resorption was very small. Furthermore, due to image quality, especially fat-water swaps, 24% of the actually
scanned patients had to be excluded from analysis. The volumetric sequence used, particularly the inline fitting process, was a research version. In the meantime, processing was optimized to minimize errors like fat-water swaps [15]. First experiences with the most recent product version let us expect fewer cases not suitable for analysis in the future.

Nonuniform distribution of MR-PDFF was studied segment by segment in a first step. We are aware of the fact that there is nonuniformity also within segments. A more elaborate analysis would be necessary to further study the uniformity of MR-PDFF distribution on a shorter length scale.

There was no accompanying investigation into potential technical confounders contributing to the observed segmental differences. Noise floor effects in combination with a spatially varying SNR of local coil arrays and parallel imaging could lead to a segment-dependent bias in the PDFF values. However, review of the individual echo images showed that at most the two largest echo times suffer from an insufficient signal. We performed signal simulations and parameter fitting with these boundary conditions (data not shown) which indicate primarily larger uncertainties, i.e., reduced precision, of single-voxel MR-PDFF values, which we expect to average out when considering whole hepatic segments. Some bias was also predicted, with a tendency to overestimate low MR-PDFF and underestimate high MR-PDFF values. Therefore, there may be even larger segmental differences than reported here. The bias effects are stronger for a lower SNR, but primarily for very low MR-PDFF and very high R2*, a combination not observed in our patients. In particular, it can be ruled out that the segmental differences for patients with elevated MR-PDFF ≥ 6.5 % (Fig. 4) are caused by a spatially varying SNR.

We only studied patients suspected of having iron overload. To address effects arising from elevated liver fat, it would be of interest to additionally investigate individuals without liver impairment, receiving MR abdominal scans for other reasons. In this study, however, we focused on patients suspected of having hepatic iron overload. The effects of increased liver fat were studied by dividing patients into two groups according to their hepatic fat content, related to liver steatosis. This may have caused a selection bias. Therefore, results should be interpreted with caution.

Table 2: Segmental actual (not relative) values MR-PDFF [%] for different patient groups (mean ± Std. Dev.)

<table>
<thead>
<tr>
<th>Segment</th>
<th>All patients</th>
<th>MR-PDFF < 6.5 %</th>
<th>MR-PDFF > 6.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment 1</td>
<td>8.96 ± 3.4</td>
<td>8.74 ± 3.6</td>
<td>9.03 ± 3.4</td>
</tr>
<tr>
<td>Segment 2</td>
<td>7.58 ± 3.4</td>
<td>7.19 ± 3.5</td>
<td>8.52 ± 3.3</td>
</tr>
<tr>
<td>Segment 3</td>
<td>9.30 ± 3.7</td>
<td>9.23 ± 3.6</td>
<td>10.08 ± 3.4</td>
</tr>
<tr>
<td>Segment 4a</td>
<td>9.30 ± 3.7</td>
<td>9.23 ± 3.6</td>
<td>10.08 ± 3.4</td>
</tr>
<tr>
<td>Segment 4b</td>
<td>7.60 ± 3.4</td>
<td>7.19 ± 3.5</td>
<td>8.52 ± 3.3</td>
</tr>
<tr>
<td>Segment 5</td>
<td>6.95 ± 3.8</td>
<td>6.75 ± 3.6</td>
<td>7.92 ± 3.2</td>
</tr>
<tr>
<td>Segment 6</td>
<td>7.62 ± 3.8</td>
<td>7.19 ± 3.5</td>
<td>8.52 ± 3.3</td>
</tr>
<tr>
<td>Segment 7</td>
<td>7.00 ± 3.7</td>
<td>6.72 ± 3.5</td>
<td>8.43 ± 3.2</td>
</tr>
<tr>
<td>Segment 8</td>
<td>6.54 ± 3.8</td>
<td>6.72 ± 3.5</td>
<td>8.43 ± 3.2</td>
</tr>
</tbody>
</table>

Fig. 3: Relative segmental MR-PDFF values shown with their 95 % confidence interval for all patients. Note the marked difference between segments 1–3 and the others.
Conclusion

Our data indicate that the storage of fat in the liver is inhomogeneous, so that differing segmental fat concentrations are found. This should be verified in a larger number of patients. This important observation may also have a practical impact, for example, for targeting liver biopsy to evaluate steatosis grade and other impairments like inflammation. This should be investigated in further clinical studies.

Table 3 p-values for significance of differences between individual segments (row vs. column) for actual and relative (given in parenthesis) MR-PDFF values for the whole patient cohort. Only significant and highly significant values are given. For other combinations, i.e., segment 1 vs. S2 or S3, and S7 vs. S8, the differences were not significant.

<table>
<thead>
<tr>
<th></th>
<th>Segment 4a</th>
<th>Segment 4b</th>
<th>Segment 5</th>
<th>Segment 6</th>
<th>Segment 7</th>
<th>Segment 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment 1</td>
<td>0.000004 (0.00001)</td>
<td>0.006 (0.0012)</td>
<td>0.000004 (0.000002)</td>
<td>0.000007 (0.000003)</td>
<td><0.000001 (0.000001)</td>
<td>0.000002 (0.000001)</td>
</tr>
<tr>
<td>Segment 2</td>
<td>0.000003 (<0.000001)</td>
<td>0.0005 (0.0003)</td>
<td><0.000001 (0.000001)</td>
<td><0.000001 (0.000001)</td>
<td><0.000001 (0.000001)</td>
<td><0.000001 (0.000001)</td>
</tr>
<tr>
<td>Segment 3</td>
<td><0.000001 (<0.000001)</td>
<td>0.000003 (<0.000001)</td>
<td><0.000001 (<0.000001)</td>
<td><0.000001 (<0.000001)</td>
<td><0.000001 (<0.000001)</td>
<td><0.000001 (<0.000001)</td>
</tr>
<tr>
<td>Segment 4a</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.0007 (0.00019)</td>
<td>–</td>
</tr>
<tr>
<td>Segment 4b</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.0011 (0.00082)</td>
<td>–</td>
</tr>
<tr>
<td>Segment 5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Segment 6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>– (0.015)</td>
</tr>
</tbody>
</table>

Fig. 4 Relative segmental MR-PDFF (rFF) values shown with their 95 % confidence interval for patients with normal MR-PDFF < 6.5 %. Note the elevated rFF in segments 1–3 compared to all patients (Fig. 3).

Fig. 5 Relative segmental MR-PDFF values shown with their 95 % confidence interval for patients with elevated MR-PDFF ≥ 6.5 %. Note the reduced segmental deviations, except for segment 4b, compared to patients with normal MR-PDFF (Fig. 4).

CLINICAL RELEVANCE

- Contiguous 3D MRI data of patients with suspected hepatic iron overload showed a markedly elevated MR proton density fat fraction (MR-PDFF) in hepatic segments 1 to 3 in a volumetric analysis.
- In patients suspected of having iron overload, intrahepatic fat distribution is similar to that of healthy persons.
- Steatosis grade may be underestimated in patients without fat metabolic disorders when taking biopsies in hepatic segment 7 or 8.
Conflict of Interest

Our co-author Stephan Kannengießer is an employee of Siemens Healthcare AG.

Acknowledgement

The authors would like to thank the Ulm University Center for Translational Imaging MoMAN for its support.

References