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ABSTRACT

In early 2020, a global pandemic was announced due to the

emergence of severe acute respiratory syndrome coronavirus

2 (SARS‑CoV‑2), known to cause COVID-19. Despite world-

wide efforts, there are only limited options regarding antiviral

drug treatments for COVID-19. Although vaccines are now

available, issues such as declining efficacy against different

SARS‑CoV‑2 variants and the aging of vaccine-induced immu-

nity highlight the importance of finding more antiviral drugs

as a second line of defense against the disease. Drug repur-

posing has been used to rapidly find COVID-19 therapeutic

options. Due to the lack of clinical evidence for the therapeu-

tic benefits and certain serious side effects of repurposed

antivirals, the search for an antiviral drug against SARS‑CoV‑2

with fewer side effects continues. In recent years, numerous

studies have included antiviral chemicals from a variety of

plant species. A better knowledge of the possible antiviral

natural products and their mechanism against SARS‑CoV‑2

will help to develop stronger and more targeted direct-acting

antiviral agents. The aim of the present study was to compile

the current data on potential plant metabolites that can be in-

vestigated in COVID-19 drug discovery and development. This

review represents a collection of plant secondary metabolites

and their mode of action against SARS‑CoV and SARS‑CoV‑2.

The Potential of Anti-coronavirus Plant Secondary Metabolites in
COVID-19 Drug Discovery as an Alternative to Repurposed Drugs:
A Review
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Introduction
The first COVID-19 case was identified in December 2019 in Wu-
han, China. This was the beginning of one of the greatest pan-
demics facing humanity in modern times. This virus, later named
SARS‑CoV‑2, is responsible for more than 6 million fatalities
worldwide to date (March 1, 2023) [1].

SARS‑CoV‑2 with crown-shaped glycoproteins on its surface
has a single-stranded RNA of 26.4–31.7 kb, which shares 80% of
its genome with the SARS‑CoV virus [2–9].

Given the vast dispersion and high fatality rate of the virus,
scientists and research institutes all over the world have been
searching for an effective treatment to manage the disease [10–
12].
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While antiviral drug development has grown and vaccines have
become accessible, there remains a demand for cost-effective and
easily applicable treatment approaches to combat COVID-19 [13].
The creation of broad-spectrum coronavirus inhibitors, which can
be administered orally or via inhalation, may play a crucial role in
dealing with emerging SARS‑CoV‑2 variants [13]. Such treatments
would be greatly beneficial in the readiness for future outbreaks
of pathogenic coronaviruses [13].

In response to the COVID-19 pandemic, much research has
been conducted on the structural properties of SARS‑CoV‑2 pro-
teins and viral-cellular protein complexes to find potential targets
for therapeutic interventions [14]. The spike (S) protein, main
protease (Mpro), papainlike protease (PLpro), and RNA-depen-
dent RNA polymerase (RdRp) are the most intensively researched
pharmacological targets [14]. In general, antiviral drugs against
al. The Potential of… Planta Med 2024; 90: 172–203 | © 2023. Thieme. All rights reserved.
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ABBREVIATIONS

(h)ACE2 (human) angiotensin converting enzyme 2

3CLpro 3-chymotrypsin-like protease

COVID-19 coronavirus disease 2019

CQ chloroquine

E envelope

EC50 half maximal effective concentration

ECG (−)-epicatechingallate

EGC (−)-epigallocatechin

EGCG (−)-epigallocatechin-3-gallate

FMF familial Mediterranean fever

HCQ hydroxychloroquine

IC50 half maximal inhibitory concentration

M membrane

MD molecular dynamics

MERS‑CoV Middle East respiratory syndrome coronavirus

Mpro main protease

N nucleocapsid

NRBD N-terminal RNA binding domain

PLpro papainlike protease

RBD receptor-binding domain

RdRp RNA-dependent RNA polymerase

S spike

SARS‑CoV severe acute respiratory syndrome coronavirus

SARS‑CoV‑2 severe acute respiratory syndrome coronavirus 2

SM(s) secondary metabolite(s)

TMPRSS2 transmembrane serine protease 2
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SARS‑CoV‑2 employ a number of different tactics to prevent viral
replication. For example, the SARS‑CoV‑2 S protein is targeted by
potential inhibitors of viral attachment to host cells and human
angiotensin converting enzyme 2 (ACE2) receptor interaction-
mediated viral entry [15–17]. Inhibiting viral proteases, Mpro
[18], also known as 3-chymotrypsin-like cysteine protease
(3CLpro), and PLpro [19,20], is a different tactic. Moreover, RdRp,
an enzyme that facilitates the synthesis of RNA using an RNA tem-
plate, has been identified as a target for the development of anti-
SARS‑CoV‑2 therapeutics [21]. Therefore, researchers are seeking
substances with the aforementioned qualities in order to identify
potential antiviral secondary metabolites to combat SARS‑CoV‑2.

Because there has been limited success in designing, develop-
ing, or discovering COVID-19 treatments, clinical and laboratory
research is ongoing, most of which is still in an early stage of re-
search [22].

The repurposed antiviral drugs used to treat COVID-19 may
provide protection against infection or speed up recovery, but all
COVID-19 antiviral drugs currently on the market have drawbacks
that may prevent their use by the general public [23–37]. For ex-
ample, remdesivir administration led to mild to moderate unde-
sirable outcomes, including but not restricted to liver toxicity,
queasiness, anemia, kidney impairment, low blood pressure, res-
piratory collapse, and constipation, among other things [38–42].
These shortcomings have highlighted the need for new and more
targeted medications [43].
Alipour Z et al. The Potential of… Planta Med 2024; 90: 172–203 |© 2023. Thieme. All rights re
Plant-derived compounds have been shown to be efficient
against viruses. For example, in 1952, the Boots pharmaceutical
company in England tested 288 plants for the first time for their
antiviral properties against influenza A [44]. According to the re-
sults of this study, 12 of the examined plants showed antiviral ac-
tivity [44]. To date, hundreds of plants with antiviral properties
have been identified and used for direct antiviral effects or to alle-
viate symptoms of viral diseases [45–47]. More recently, Guerra et
al. conducted a comprehensive review of reports focusing on
plant-derived compounds as potential inhibitors of the SARS-
CoV-2 proteases [48]. Their findings indicated that flavonoids
constitute a significant portion of these compounds, with querce-
tin emerging as the molecule with the highest number of reports,
followed by kaempferol [48].

In response to the COVID-19 pandemic, Thailandʼs Ministry of
Health has authorized the utilization of Andrographis paniculata,
also known as green chiretta, as a pilot program to address the ini-
tial phases of COVID-19 [49]. This initiative was implemented dur-
ing a surge in the coronavirus outbreak in the Southeast Asian na-
tions, with the aim of providing an alternative treatment option to
alleviate the severity of the outbreak and decrease treatment ex-
penses [49].

To defend themselves against biotic and abiotic stresses in-
cluding pests, microorganisms, and environmental conditions,
plants produce structurally diverse low-molecular-weight com-
pounds called secondary metabolites or specialized metabolites
(SMs) [50,51]. Based on their chemical structure, SMs are classi-
fied as phenolic compounds (e.g., flavonoids), terpenoids, sulfur-
containing compounds (e.g., glucosinolates), and nitrogen-con-
taining compounds (e.g., alkaloids) [52]. In this review, we have
compiled the latest data on the potential antiviral properties of
plant SMs and their mode of action against SARS‑CoV‑2. We con-
ducted a search of the Google Scholar, PubMed, and Science Di-
rect databases using terms such as phytochemical, plant-derived
compounds, plant compounds, and secondary metabolites, in
conjunction with antiviral, SARS‑CoV‑2, and coronavirus. Our
search focused on original papers reporting in vitro, in vivo, and in
silico studies from the emergence of SARS‑CoV‑2 in December
2019. To retrieve a comprehensive list of phytochemicals that
have demonstrated inhibitory properties against drug targets
with high similarity between SARS‑CoV‑2 and related viruses, we
conducted additional searches using terms such as SARS‑CoV and
MERS‑CoV. This approach enabled us to identify potential candi-
dates for further investigation and development as antiviral agents
against SARS‑CoV‑2. Additionally, we incorporated the terms clas-
sification and structure to explore the structural properties and
classification of these compounds. The presented data may pro-
vide a new approach for designing and developing future antiviral
drugs.
Classification of SARS‑CoV‑2
On January 12, 2020, China disclosed the genetic sequence of
SARS‑CoV‑2 for use in diagnostic kits in other countries [53]. Re-
searchers classified this virus by using a viral classification system
after evaluating its sequence [54]. Similar to SARS‑CoV and MERS-
CoV, SARS‑CoV‑2 belongs to the genus betacoronavirus, subfam-
173served.



▶ Table 1 List of FDA-approved synthetic drugs against COVID-19, their mechanism of action, and probable side effects.

Name of Drug Mechanism of Function Side Effects Reference/s

Remdesivir (Veklury) Inhibition of viral replication Headache, nausea, affecting blood tests [23–26]

Tocilizumab (Actemra) and
Infliximab/Tocilizumab

Tocilizumab as an antagonist for interleukin-
6 (IL-6) receptor acts as an anti-inflamma-
tory agent in patients with cytokine storm

No side effect in initial studies,
enhancement of liver enzymes in the
case of infliximab/tocilizumab

[27–23]

Baricitinib (Olumiant) Inhibition of virus infection and acting as an
anti-inflammatory agent

Vein thrombosis [30–31]

Paxlovid (Nirmatrelvir-Ritonavir) Inhibition of viral replication Headache, diarrhea, vomiting dysgeusia [32]

Molnupiravir (Lagevrio) Inhibition of virus multiplying Dizziness, rash, diarrhea, nausea [33–34]

Kineret (anakinra) Inhibition of interleukin-1 (IL-1) receptor Reaction in injection site, enhancement
of liver enzymes, hypertension

[35–36]

Gohibic (Vilobelimab) Vilobelimab as an antagonist od comple-
ment component 5a (C5-a) receptor, acts as
anti-inflammatory agent

Hypertension, pneumonia, pulmonary
embolism, delirium, and sepsis

[37]
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ily Orthocoronavirinae, and family Coronaviridae. The subfamily Co-
ronavirinae is divided into the genera alphacoronavirus, betacoro-
navirus, gammacoronavirus, and deltacoronavirus based on ge-
nomic sequence, with betacoronaviruses and alphacoronaviruses
being human-pathogenic [55].

SARS‑CoV‑2 is classified as lineage B based on its greater simi-
larity to SARS‑CoV (79.5% sequence homology) compared to oth-
er betacoronaviruses such as MERS‑CoV (50% sequence homol-
ogy) [56]. Another finding supporting this classification is that
the seven ORF1ab domains of SARS‑CoV‑2 have a 94.6% similarity
to those of SARS‑CoV, compared to less than 90% for other beta-
coronaviruses [57]. The reproductive number (R, which deter-
mines how infectious the agent is) is significantly higher for
SARS-CoV‑2 (2.9) compared to SARS‑CoV R (1.77) [58,59].

The coronaviridae study group (CSG) first classified these three
viruses, SARS‑CoV‑2, SARS‑CoV, and MERS‑CoV, as distinct spe-
cies within a new, informal subclass of the genus betacoronavirus
[60,61]. When subgenus rank was established in virus classifica-
tion, these three informal subgroups were introduced as the three
subgenera Sarbecovirus, Embecovirus, and Merbecovirus, respec-
tively, and unique names were defined for these viruses and their
species according to virus classification practice [62]. To date, five
concerning SARS‑CoV‑2 variants have been identified: alpha,
beta, gamma, delta, and omicron [63,64].
SARS‑CoV‑2 Structure and
COVID-19 Drug Targets

The genome of SARS‑CoV‑2 is a 30 kb single-stranded positive-
sense RNA [56]. This virus shares less than 79% nucleotide se-
quence homology with SARS‑CoV [56]. The novel coronavirus,
SARS‑CoV‑2, is distinguished from other betacoronaviruses by its
distinct polybasic cleavage sites, which result in increased trans-
mission intensity and pathogenicity [65].
174 Alipour Z et
From 5′ to 3′, this virus has six major open reading frames
(ORFs) and additional supplementary genes that are translated
into replicase (ORF1a/ORF1b), S, envelope (E), membrane (M),
and nucleocapsid (N) proteins [66]. In addition, the viral genome
has seven sub-ORFs encoding accessory proteins distributed
among structural genes [56,57,67].

There are 16 nonstructural proteins, 9 accessory proteins, and
4 structural proteins in the SARS‑CoV‑2 virus [68]. Most of them
are of the same length as their SARS‑CoV counterparts [56,57].
The structural and nonstructural proteins of these two viruses ex-
hibit 90% and 85% similarity, respectively [69].

SARS‑CoV‑2′s major therapeutic targets are S, 3CLpro or Mpro,
and RdRp [70]. E proteins, M proteins, N proteins, helicase pro-
teins, and PLpro are other potential therapeutic targets for devel-
oping or repurposing drugs to treat the COVID-19 disease [70].

It is worth noting that several host proteins can be utilized as
therapeutic targets due to their roles in processes such as virus
binding to host cells or viral protein activation. Angiotensin-con-
verting enzyme 2 (ACE2) [71,72], transmembrane serine pro-
tease 2 (TMPRSS2) [73–76], cathepsin L [77], and furin [78] are
among the host proteins that can be used as COVID-19 drug tar-
gets.
Current Treatments for COVID-19 Disease
To date, numerous studies have been conducted on the applica-
tion of repurposed medicines that can be effective for the treat-
ment of COVID-19. Among the various drugs introduced as a rem-
edy, only a few have been approved by the US Food and Drug Ad-
ministration (FDA) based on their safety and efficacy (https://
www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-
covid-19-drugs). The complete list of approved drugs is provided
in ▶ Table 1.
al. The Potential of… Planta Med 2024; 90: 172–203 | © 2023. Thieme. All rights reserved.
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Prioritizing Potential Candidates for
Anti-SARS‑CoV‑2 Drug Development
and Discovery from Phytochemicals
and Plant Secondary Metabolites
Numerous research studies have looked into the potential of phy-
tochemicals as anti-COVID‑19 drug candidates. However, with the
plethora of compounds available, it is crucial to establish a rational
approach to prioritize the most promising candidates for further
investigation. This section aims to provide guidelines for prioritiz-
ing the compounds with the highest likelihood of exhibiting po-
tent antiviral effects against SARS‑CoV‑2.

In silico screening and molecular docking studies

Drug design and discovery is a time-consuming and resource-in-
tensive process. Traditional methods often fall short, leading to
the introduction of modern computer-aided drug design (CADD)
approaches aimed at reducing time and cost [79].

Molecular docking and molecular dynamics (MD) simulations
are commonly employed methods in CADD for identifying and re-
purposing potential drugs against various life-threatening dis-
eases [80,81]. These techniques enable researchers to study the
behavior of small chemical entities in the active sites of target
proteins and determine their activity [82].

Molecular docking calculations focus on identifying the active
site regions of receptors to determine ligand–receptor interac-
tions and find the optimal binding modes. As discussed, in the
case of COVID-19, the main drug targets for molecular docking
are Mpro, PLpro, and RdRp, crucial proteins involved in viral repli-
cation and transcription.

Despite its merits, there are several limitations to the applica-
tion of molecular docking in drug discovery. Scoring functions
struggle to accurately predict binding energies due to challenges
with certain intermolecular interaction terms [83]. Significant in-
teractions like halogen bonding and guanidine–arginine interac-
tions are often ignored [84,85]. Handling water molecules in
binding pockets is problematic due to a lack of hydrogen coordi-
nates and theoretical approaches [86]. Additionally, failing to ac-
count for protein conformational changes due to a rigid receptor
could lead to inaccurate negative findings [87]. Furthermore, as-
sessing off-target activity is a challenge typically addressed
through animal and human trials [82,86]. These limitations high-
light the need for ongoing research and improvement in molecu-
lar docking.

MD simulations, as an in silico computational approach, enable
the prospective estimation of temporal system evolution and,
consequently, anticipate the MD within the system [88]. This
technique provides insights into the dynamic interactions be-
tween molecules and their target proteins.

Using MD simulations can be a useful tool in discovering drugs
for COVID-19, but their limitations may impact their dependabil-
ity and precision. These limitations arise from the current inad-
equacies of the force fields used in simulations [89,90]. The force
fields often overlook critical factors such as polarization effects,
charge transfer, electronic-based interactions, including π−π and
cation−π interactions, and halogen bonds [91]. To improve the ac-
Alipour Z et al. The Potential of… Planta Med 2024; 90: 172–203 |© 2023. Thieme. All rights re
curacy of free-energy predictions, future developments will likely
incorporate polarizable force fields and quantum mechanical cal-
culations [91]. Furthermore, prolonging the duration of simula-
tions to micro- and millisecond intervals can produce more reli-
able outcomes that correspond with real-life experimental situa-
tions [92].

Moreover, the accuracy of these simulationsʼ application to
complex target families like metalloproteins is limited [91]. Addi-
tionally, when utilizing MD simulations, there can be difficulties
due to the lack of standardized protocols, inadequate analytical
resources, and the management of extensive trajectory data [93].

A study conducted by Kumar et al. serves as an illustrative in-
stance wherein a combination of methodologies, including mo-
lecular docking and MD simulations, were employed to identify
potential inhibitors targeting the main Mpro of SARS‑CoV‑2 [94].
Notably, the study successfully identified three novel natural me-
tabolites, namely ursolic acid, carvacrol, and oleanolic acid, which
exhibited stable and high binding energies with the Mpro protein
[94]. Furthermore, the compounds were found to comply with the
principles of absorption, distribution, metabolism, and excretion
(ADME), as well as Lipinskiʼs rule of five, ensuring their pharma-
cological viability [94].

Despite the extensive computational exploration of various
drugs for COVID-19, experimental methods remain irreplaceable
in the identification of promising drug candidates [95]. In vitro ex-
periments are needed to validate results of in silico studies, includ-
ing assessing antiviral effects in infected human lung cells. In vivo
studies using SARS‑CoV‑2 animal models are necessary for con-
firming inhibitory potential. However, only a few compounds have
been tested in both in vitro and in vivo settings.

Nevertheless, by using meticulously curated prior experimen-
tal data and employing rigorous computational tools, it is possible
to facilitate the successful discovery of viable drug candidates
through experimental means.

Experimental validation and in vitro studies

Antiviral compounds are evaluated by monitoring their cytopathic
effects in different cell lines [96]. In vitro antiviral studies against
SARS‑CoV‑2 involve using cells and organoids. Cell lines such as
Vero E6, HEK293T, Calu-3, Huh7, and Caco-2 are used to replicate
and isolate the virus and conduct infection experiments. These
cell lines provide valuable information about virus replication and
infection, although they have limitations in accurately mimicking
human physiological conditions.

SARS‑CoV‑2 mainly invades ciliated and type 2 pneumocyte
cells in the human lung [97]. Hence, differentiated primary airway
epithelial cells serve as a suitable model, but their restricted life-
span in cell culture needs improvement [98].

Moreover, Vero E6, a kidney cell line derived from African green
monkeys, is commonly used due to its high susceptibility to SARS-
CoV‑2 and expression of key entry receptors [96]. However, cell
lines derived from animals are insufficient, particularly for evaluat-
ing antiviral prodrugs like nucleos(t)ide inhibitors that necessitate
metabolic stimulation in human cells [99,100].

Organoids consist of various types of cells and replicate the
physiological characteristics of human organs [101]. Due to their
capacity for self-replication, organoids are well suited for exten-
175served.



▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV.

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Alkaloids Amaryllidaceae
alkaloid

Lycorine Lycoris radiata SARS‑CoV
SARS‑CoV‑2

In vitro Anti-SARS‑CoV activity (EC50: 15.7 nM); Anti-SARS-
CoV‑2 activity due to reduction of viral RNA levels
(EC50: 0.31 µM) and cytopathic effects; Reduction of
N protein production.

[188,
226]

Benzylisoquino-
line alkaloid

Tetrandrine Stephania
tetrandra

SARS‑CoV‑2 In vitro Calcium channel blocker; Dose-dependent prevention
of the SARS‑CoV‑2 pseudotyped virus entry.

[4]

Benzylisoquino-
line alkaloid

Cepharanthine Stephania spp. SARS‑CoV‑2 In vitro Inhibition of ACE (0.98mmol/L); Limiting the SARS-
CoV‑2 pseudotyped virus entry (IC50: 2.8 µM); Reduc-
tion of the viral RNA quantity ensuing authentic virus
infection.

[227–
229]

Benzylisoquino-
line alkaloid

Berberine Berberis petiola-
ris,
Berberis vulgaris

SARS‑CoV‑2 In vitro Reduction of viral production (EC50: 10.6 µM); Reduc-
tion of viral production (EC50: 2.1 µM).

[230,
231]

Bisbenzylisoqui-
noline alkaloid

Berbamine Berbaris
amurensis

SARS‑CoV‑2 In vitro Interference with the activity of 2-E protein channels
(IC50: 111.5 µM); Cellular defense against cytopathic
effects (IC50: 34.34 µM), Reduction of virus replication
(EC50: 14.5 µM), Reduction of titers and levels of viral
RNA (EC50: 2.4 µM); Preventing the introduction of the
SARS‑CoV‑2 pseudotyped virus.

[232,
233]

Bisbenzylisoqui-
noline alkaloid

Liensinine Nelumbo
nucifera

SARS‑CoV‑2 In vitro Preventing the entry of the SARS‑CoV‑2 pseudotyped
virus (EC50: 11.52 µM).

[234]

Bisbenzylisoqui-
noline alkaloid

Neferine Nelumbo
nucifera

SARS‑CoV‑2 In vitro Reduction of the viral RNA quantity ensuing authentic
virus infection; Preventing the entry of the SARS-CoV-
2 S pseudotyped virus (EC50: 0.36 µM); Inhibition of
Ca2+-dependent membrane fusion of pseudotyped
virus with cells.

[234]

Bisbenzylisoqui-
noline alkaloid

Hernandezine Thalictrum
hernandezii,
Thalictrum
fendleri

SARS‑CoV‑2 In vitro Blocking the host calcium channels, followed by in-
hibiting Ca2+-membrane fusion and suppressing virus
entry; Limiting the SARS‑CoV‑2 pseudotyped virus
entry (EC50: 0.111 µM).

[227]

Bisindole alkaloid Strychnopent-
amine

Strychnos
usambarensis

SARS‑CoV‑2
MERS‑CoV

In silico
In vitro

High binding affinity exhibition toward the RdRp
enzyme (− 9.4 kcal/mol).

[235]

Bisindole alkaloid 10′–Hydroxy-
usambarensine

Strychnos
usambarensis

SARS‑CoV‑2 In silico High binding affinity exhibition toward the RdRp
enzyme (− 10.1 ± 0.38 kcal/mol).

[235]

Cephalotaxus
alkaloid

Homoharringto-
nine

Cephalotaxus
harringtonia

SARS‑CoV‑2 In vitro Reduction of viral copy number (EC50: 2.14 µM);
Reduction of cytopathic effects (EC50: 3.125 µM);
Reduction of infectious virus (EC50: 2.55 µM).

[236]

Indole alkaloid Cryptospirole-
pine

Cryptolepis
sanguinolenta

SARS‑CoV‑2
SARS‑CoV
MERS‑CoV

In silico
In vitro
Clinical
trial

Favorable binding affinity exhibition toward the RdRp
enzyme (− 10.5–0.57 kcal/mol); Favorable binding
affinity exhibition toward the Mpro of SARS‑CoV and
MERS‑CoV.

[190,
235]

Indole alkaloid Reserpine Rauvolfia
serpentine

SARS‑CoV‑2 In vitro Reduction of viral double-stranded RNA production
(EC50: 29.2 µM).

[237]

continued next page
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sive drug discovery and disease research screenings [101]. They
offer insights into SARS‑CoV‑2 infection on human tissues and
aid in evaluating antiviral effects of compounds [102].

In vivo and clinical studies

As noted in the preceding parts and ▶ Table 2, numerous in silico
and in vitro studies have assessed the effectiveness of plant SMs
against SARS‑CoV‑2. However, there remains a shortage of ade-
176 Alipour Z et
quate in vivo and clinical research to establish the efficacy of plant
SMs in preventing viral infections or reducing symptoms associ-
ated with viral infections [103]. In reality, several compounds that
exhibit strong antiviral activity in laboratory settings may prove to
be ineffective in pre-clinical or clinical trials [104].

Until now, the evaluation of the in vivo antiviral effects of plants
in animal models infected with SARS‑CoV‑2 has primarily relied on
crude extracts. Deng et al. conducted a study to evaluate the ef-
al. The Potential of… Planta Med 2024; 90: 172–203 | © 2023. Thieme. All rights reserved.



▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Alkaloids Indole alkaloid Indigodole B Strobilanthes
cusia

HCoV-NL63 In vitro Reduction of viral yield (IC50: 2.60 µM); Virucidal
activity (IC50: 2.09 µM).

[238]

Isoquinoline
alkaloid

Isoliensinine Nelumbo
nucifera

SARS‑CoV‑2 In vitro Preventing the entry of the SARS‑CoV‑2 pseudotyped
virus (EC50: 3.31 µM (CC).

[234]

Isoquinoline
alkaloid

Emetine Psychotria
ipecacuanha

SARS‑CoV‑2 In vitro
Clinical
trial

Increase in oxygen levels; Reduction of viral RNA
quantity (EC50: 0.147 nM); Reduction in cytopathic
effects (EC50:1.56 µM); Reduction of viral titer (EC50:
0.46 µM), and viral RNA levels (EC50: 0.5 µM); Signifi-
cant inhibition of viral replication (EC50: 0.007M) ob-
served in pre-virus Vero cells; Inhibition of viral entry
in Vero cells; Pre-drug therapy prevents viral entry
(EC50: 0.019M) (pragmatic randomized clinical trial).

[228,
236,
239–
241]

Isoquinoline
alkaloid

Somniferine Withania
somnifera

SARS‑CoV‑2 In silico High binding affinity exhibition toward Mpro (IC50:
9.62 kcal/mol).

[242]

Methylxanthine
alkaloid

Caffeine Paullinia
cupana,
Coffea cane-
phora,
Coffea arabica

SARS‑CoV‑2 In silico Prevention of viral entry by inhibiting the synthesis of
RBD and the ACE-2 complex; Possible inhibition of
Mpro activity to potentially reduce viral replication
(− 5.6 ± 0.30 kcal/mol).

[243,
244]

Phenanthraindo-
lizidine alkaloid

Tylophorine and
tylophorine ana-
logs

Tylophora
indica

SARS‑CoV,
MERS‑CoV

In vitro Virucidal activity (Prevention of coronavirus replica-
tion; Blocking the cytopathic impact that a virus
causes in cells in vitro by inducing apoptosis; EC50 val-
ues for natural and synthesized tylophorine analogs
were 8–1468 nM and 5–340 nM respectively; Attack-
ing viral RNA.

[245,
246]

Quinazoline
alkaloid

Tryptanthrin Strobilanthes
cusia

HCoV-NL63 In vitro Reduction of viral yield (IC50:1.52 µM).
Virucidal activity (IC50: 0.06 µM); Inhibition of PLpro
activity and viral RNA replication.

[238]

Indole alkaloid Indigo Baptisia
tinctoria

SARS‑CoV In vitro Inhibition of Mpro in the peptide cleavage assay IC50:
300 µM (cell-free assays), 752 µM (cell-based assays).

[247]

Quinoline alkaloid Quinidine Cinchona
officinalis

SARS‑CoV‑2 In vitro Reduction of viral double-stranded RNA production
(EC50: 13.3 µM).

[237]

Quinoline alkaloid Quinine Cinchona
officinalis

SARS‑CoV‑2 In silico
In vitro

Dose-dependent suppression of SARS‑CoV‑2 infection
displayed in various A549-ACE2/TMPRSS2 structures
(EC50: 5.58–55.82 µM).

[248]

Quinolizidine
alkaloid

Oxysophoridine Sophora
alopecuroides

SARS‑CoV‑2 In vitro Decreasing viral RNA quantity and cytopathic effects
(EC50: 0.18 µM) (CC50 > 40 µM)

[226]

Tetrahydroxyin-
dolizidine alkaloid

Castanosper-
mine

Castanosper-
mum australe

SARS‑CoV‑2 In vitro Reduction of cytopathic effects dose-dependently;
Reduction of viral RNA level.

[249]

Tropane alkaloid Schizanthine Z Schizanthus
porrigens

SARS‑CoV‑2 In silico High binding affinity toward PLpro. [189]
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fectiveness of Pudilan Xiaoyan Oral Liquid (PDL), a traditional
Chinese medicine containing Isatis indigotica, Corydalis bungeana,
Taraxacum mongolicum, and Scutellaria baicalensis [105]. The re-
searchers examined the potential of PDL against SARS‑CoV‑2
through in vitro and in vivo studies [105]. Their findings, combined
with bioinformatics and network pharmacology analyses, demon-
strated that PDL exhibited strong antiviral activity against SARS-
CoV‑2 and showed promising results both in vitro and in vivo
[105]. These results suggest that PDL could be considered for clin-
Alipour Z et al. The Potential of… Planta Med 2024; 90: 172–203 |© 2023. Thieme. All rights re
ical use as a treatment for pneumonia caused by SARS‑CoV‑2
infection, either alone or in combination with other effective anti-
viral medications [105].

To advance phytochemicals into antiviral drugs for the treat-
ment of COVID-19, more comprehensive experimental and pre-
clinical investigations, including bioavailability, pharmacokinetics,
pharmacodynamics, and toxicological studies, must be con-
ducted in animal models. These essential steps are required be-
fore the compounds can be considered for human studies.
177served.



▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Phenolic
compounds

Cannabinoid Cannabidiol Cannabis sativa SARS‑CoV‑2 In vitro Prevention of viral gene expression and reversing
some of SARS-impacts CoV-2′s on host gene tran-
scription during viral infection in lung epithelial cells;
Increasing the synthesis of interferon and turning on
its antiviral signaling pathway.

[250,
251]

Cannabinoid Cannabigerolic
acid

Cannabis sativa SARS‑CoV‑2 In silico
In vitro

Inhibition of live SARS‑CoV‑2 entry, as it effectively
prevented the infection of human epithelial cells by a
pseudovirus expressing the SARS‑CoV‑2 S protein.

[252]

Cannabinoid Δ9-Tetrahydro-
cannabinol

Cannabis sativa SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 10.25 µM). [250]

Cannabinoid Cannabidiolic
acid

Cannabis sativa SARS‑CoV‑2 In silico
In vitro

Inhibition of live SARS‑CoV‑2 entry, as it effectively
prevented the infection of human epithelial cells by a
pseudovirus expressing the SARS‑CoV‑2 S protein.

[252]

Coumarin Leptodactylone Boenninghause-
nia sessilicarpa

SARS‑CoV In vitro Demonstration of strong protective efficacy against
SARS‑CoV-infected cells, with a ratio of 60% at
100mg/ml.

[253]

Coumarin Tomentin A Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 6.20 µM). [254]

Coumarin Tomentin B Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 6.10 µM). [254]

Coumarin Tomentin C Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 11.60 µM). [254]

Coumarin Tomentin D Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 12.50 µM). [254]

Coumarin Tomentin E Paulownia
tomentosa

SARS‑CoV
SARS‑CoV‑2

In vitro Inhibition of PLpro (IC50: 5.0 ± 0.06 µM) in a dose
dependent manner.

[254]

Coumarin Psoralidin Psoralea
corylifolia

SARS‑CoV In vitro Inhibition of PLpro (IC50: 4.2 ± 1.0 µM). [255]

Diarylheptanoid Hirsutanonol Alnus japonica SARS‑CoV In vitro Inhibition of Mpro (IC50: 105.60 µM);
Inhibition of PLpro (IC50: 7.80 µM).

[256]

Diarylheptanoid Hirsutenone Alnus japonica SARS‑CoV In vitro Inhibition of Mpro (IC50: 36.20 µM);
Inhibition of PLpro (IC50: 4.10 µM).

[256]

Diarylheptanoid Oregonin Alnus japonica SARS‑CoV In vitro Inhibition of Mpro (IC50: 129.50 µM);
Inhibition of PLpro (IC50: 20.10 µM).

[256]

Diarylheptanoid Rubranol Alnus japonica SARS‑CoV In vitro Inhibition of Mpro (IC50: 1 44.60 µM);
Inhibition of PLpro (IC50: 12.30 µM).

[256]

Diarylheptanoid Rubranoside B Alnus japonica SARS‑CoV In vitro Inhibition of Mpro (IC50: 105.3 µM);
Inhibition of PLpro (IC50: 8.00 µM).

[256]
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For instance, baicalein, a compound from Scutellaria baicalen-
sis, was studied by Song et al. for its therapeutic effects on COVID-
19 [106]. The research showed that baicalein protected cells from
SARS‑CoV‑2 damage and improved their morphology [106]. Oral
administration of baicalein reached effective concentrations, in-
hibiting virus replication and reducing lung tissue damage in in-
fected mice [106]. In addition, baicalein improved respiratory
function and decreased inflammation in mice with lung injury
[106]. These findings suggest baicalein as a promising treatment
for COVID-19.
178 Alipour Z et
The bioavailability and solubility challenges associated with
utilizing plant secondary metabolites for antiviral administration
in drug discovery and development can be overcome through
the utilization of drug delivery systems. Encapsulating or linking
these compounds with nanocarriers provides a promising solution
to enhance their delivery, distribution, degradation, and availabil-
ity [107]. Organic-based nanocarriers, such asmicelles, liposomes,
niosomes, bilosomes, solid lipid nanoparticles, and archaeo-
somes, are commonly employed for transporting hydrophobic
drugs within the body [108]. Furthermore, various pharmaceuti-
al. The Potential of… Planta Med 2024; 90: 172–203 | © 2023. Thieme. All rights reserved.



▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Phenolic
compounds

Diarylheptanoid Curcumin Curcuma longa SARS‑CoV‑2 In vitro
Clinical
trial

Nano-curcumin decreased IL6 and IL1 expression and
serum levels, with a 20% death rate in the curcumin
group compared to a 40% mortality rate in the pla-
cebo group (randomized clinical trial); Higher capacity
to maintain oxygen saturation, earlier symptomatic
recovery, fewer deterioration, less red flag indicators,
better clinical results, lessen the mortality rate and
shorten the hospital stay for patients with mild to se-
vere symptoms (randomized clinical trial); Pseudovirus
dose-dependently inhibited by hACE2 on A549; Dose-
dependent suppression of A549/hACE2 syncytia; A
dose-dependent reduction in the activity of TMPRSS2
and ACE2

Reduction of SARS‑CoV‑2 RNA levels (EC50: 7.9 µg/ml)
in Vero E6 and human Calu-3 cells.

[257–
260]

Diarylheptanoid Rubranoside A Alnus japonica SARS‑CoV In vitro Inhibition of Mpro (IC50: 102.10 µM); Inhibition of
PLpro (IC50: 9.10 µM).

[256]

Ellagitannin Punicalagin Punica grana-
tum,
Terminalia
catappa

SARS‑CoV‑2 In vitro Inhibition of RBD-hACE2 binding. [261,
262]

Ellagitannin Chebulagic acid Terminalia
chebula

SARS‑CoV‑2 In vitro Inhibition of S protein, ACE-2, Mpro. [261]

Gallotannin Tannic acid Caesalpinia
spinosa,
Rhus spp. semi-
alata

SARS‑CoV‑2 In vitro Inhibition of TMPRSS (IC50: 22.31 µM) and Mpro
(IC50: 13.4 µM).

[225]

Flavonoid
(catechin)

Epigallocatechin
gallate

Camellia
sinensis

SARS‑CoV In vitro Inhibition of Mpro (IC50: 73.00 µM). [133]

Flavonoid
(catechin)

Gallocatechin
gallate

Camellia
sinensis

SARS‑CoV In vitro Inhibition of Mpro (IC50: 47.00 µM). [133]

Flavonoid
(catechin)

Catechin Camellia
sinensis

SARS‑CoV‑2 In vitro Virus incubation with catechin, resulted in a dose-
dependent decrease in viral titers.

[263]

Flavonoid
(catechin)

Epigallocate-
chin-3-gallate

Camellia
sinensis

SARS‑CoV‑2 In vitro Prevention of the SARS‑CoV‑2 pseudotyped virus
entry; Blocking receptor-binding domain (RBD)/
hACE2 binding; Early addition lowers viral RNA con-
centration; Inhibition of Mpro (IC50: 7.58 µM);
Non-structural protein 15 inhibition (IC50: 1.62M);
Reduction of viral titers (EC50: 0.20M).

[161,
264–
266]

Flavonoid
(catechin)

Theaflavin
3,3′-di-O-
gallate

Camellia
sinensis

SARS‑CoV‑2 In vitro Reduction in ACE2/TMPRSS2 activity; Inhibition of
Mpro (IC50 8.44 g/ml); Reduction of SARS‑CoV‑2 RNA
and titer levels; Inhibition of Cathepsin L. pseudovirus
and viral entry.

[259,
265,
266]

Flavonoid
(chalcone)

4-Hydroxyderri-
cin

Angelica keiskei SARS‑CoV In vitro Inhibition of PLpro (IC50: 26.00 µM);
Inhibition of Mpro (IC50: 81.40 µM).

[267]

Flavonoid
(chalcone)

Xanthoangelol E Angelica keiskei SARS‑CoV In vitro Inhibition of PLpro (IC50: 1.2 ± 0.4 µM);
Inhibition of Mpro activity (IC50: 11.4 ± 1.4 µM)

[267]

Flavonoid
(chalcone)

Panduratin A Boesenbergia
pandurata

SARS‑CoV‑2 In vitro Inhibition of SARS‑CoV‑2 (IC50 of 5.30 µM, CC50:
43.47 µM); Inhibition of SARS‑CoV‑2 pathogenicity in
Vero E6 cells with corresponding IC50 values of
3.62 µg/mL (CC50: 28.06 µg/mL) and 0.81M (CC50:
14.71 µM).

[268]

Flavonoid
(chalcone)

4′-O-Methyl-
bavachalcone

Psoralea
corylifolia

SARS‑CoV In vitro Inhibition of PLpro (IC50: 10.10 µM). [255]
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▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Phenolic
compounds

Flavonoid
(chalcone)

Isobavachalcone Psoralea coryli-
folia

SARS‑CoV In vitro Inhibition of PLpro (IC50: 7.30 µM). [255]

Flavonoid
(flavanone)

Hesperetin Aloe barbaden-
sis, Rutaceae
family

SARS‑CoV In vitro Inhibition of Mpro (IC50: 60.00 µM) [247]

Flavonoid
(flavanone)

Naringenin Citrus spp.,
Lycopersicum
esculentum

SARS‑CoV‑2
SARS‑CoV

In vitro Targeting TPCs and the Akt/mTOR signaling pathway;
Dose-dependent reduction in cytopathic effects; Inhi-
bition of Mpro (IC50: 92 nM); Reduction of cytopathic
effects (EC50: 28.35 µg/mL).

[269,
270]

Flavonoid
(flavanone)

6-Geranyl-
4′,5,7-trihy-
droxy-3′,5′-
dimethoxy-
flavanone

Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 13.90 µM). [254]

Flavonoid
(flavanone)

3′-O-Methyl-
diplacol

Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 9.50 µM). [254]

Flavonoid
(flavanone)

3′-O-Methyl-
diplacone

Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 13.20 µM). [254]

Flavonoid
(flavanone)

4′-O-Methyl-
diplacol

Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 9.20 µM). [254]

Flavonoid
(flavanone)

4′-O-Methyl-
diplacone

Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 12.70 µM). [254]

Flavonoid
(flavanone)

Diplacone Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 10.40 µM). [254]

Flavonoid
(flavanone)

Mimulone Paulownia
tomentosa

SARS‑CoV In vitro Inhibition of PLpro (IC50: 14.40 µM). [254]

Flavonoid
(flavanone)

Bavachinin Psoralea coryli-
folia, Rutaceae
family

SARS‑CoV In vitro Inhibition of PLpro (IC50: 38.40 µM). [255]

Flavonoid (fla-
vone glycoside)

Rhoifolin Rhus succeda-
nea

SARS‑CoV In vitro Inhibition of Mpro (IC50: 27.45 µM). [271]

Flavonoid (fla-
vone glycoside)

Baicalin Scutellaria
baicalensis,
Scutellaria
lateriflora

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 6.41 µM); Reduction of viral
RNA level (EC50: 27.87 µM); Inhibition of Mpro (IC50:
83.4); Inhibition of non-structural protein 15 RNAse
activity (IC50: 7.98 µM); Inhibition of Mpro (IC50:
34.71 µM).

[170,
172,
173,
264]

Flavonoid
(flavone)

Pectolinarin Cirsium spp.,
Linaria spp.

SARS‑CoV
SARS‑CoV‑2

In vitro Inhibition of SARS‑CoV‑2 Mpro (IC50: 51.64mM); Inhi-
bition of SARS‑CoV Mpro (IC50: 37.78 µM).

[133,
173]

Flavonoid
(flavone)

Corylifol A Psoralea
corylifolia

SARS‑CoV In vitro Inhibition of PLpro (IC50: 32.20 µM) [255]

Flavonoid
(flavone)

Baicalein Scutellaria
baicalensis,
Scutellaria
lateriflora

SARS‑CoV‑2 In vitro
In vivo

Reduction of viral RNA concentration (EC50: 2.94M);
Reduction of viral RNA levels (EC50: 10 µM); Inhibition
of Mpro (IC50: 0.39 µM); Reduction of viral RNA con-
centration (EC50: 2.92 µM); Reduction of cytopathic
effects; Reduction of viral load, body weight loss, and
cellular inflammation in the lungs in laboratory mice
(0.1–50 µM); Inhibition of Mpro and RNA polymeri-
zation activity of SARS‑CoV‑2 Mpro (IC50: 4.5Μm).

[106,
169–
172]
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▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Phenolic
compounds

Flavonoid
(flavone)

Quercetagetin Scutellaria
baicalensis,
Tagetes erecta

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 1.24 µM). [170]

Flavonoid
(flavone)

Scutellarein Scutellaria spp. SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 5.8 µM) through a protease
assay.

[170]

Flavonoid (flavo-
nol glycoside)

Rutin Fagopyrum
esculentum,
Rheum spp.

SARS‑CoV‑2 In vitro Exhibition of stable binding affinity against S-ACE2
protein through a deubiquitinase inhibition assay.

[272]

Flavonoid
(flavonol)

Quercetin Allium cepa,
Vaccinium spp.,
Torreya nucifera

SARS‑CoV
SARS‑CoV‑2

In silico
In vitro

Inhibition of SARS‑CoV‑2 Mpro (Ki ~ 7.00 µM); Inhibi-
tion of SARS‑CoV Mpro (IC50: 23.80 µM); Favorable
binding affinity exhibition toward SARS‑CoV S protein
(− 8.5 kcal/Mol).

[273–
275]

Flavonoid
(flavonol)

Kaempferol Capparis
spinosa,
Crocus sativus

SARS‑CoV‑2
SARS‑CoV

In silico
In vitro

Reduction of cytopathic effects (EC50: 34.46 µM); In-
hibition of Mpro; Inhibition of 3a ion channel of coro-
navirus; Favorable binding affinity exhibition toward
SARS‑CoV‑2 S protein (− 7.4 kcal/Mol).

[146,
157,
276]

Flavonoid
(flavonol)

Myricetin Ceratonia
siliqua,
Vaccinium spp.

SARS‑CoV‑2
SARS‑CoV

In vitro
Clinical
trial

Inhibition of Mpro (IC50: 2.86 µM); Inhibition of non-
structural protein 13 by affecting the ATPase activity;
Inhibition of the enzymatic activity of SARS‑CoV‑2
Mpro and interfere the replication of SARS‑CoV‑2
(IC50: 0.63 µM) in Vero E6 cells.

[170,
277,
278]

Flavonoid
(flavanonol)

Dihydromyrice-
tin

Ampelopsis
grossedentata

SARS‑CoV‑2 In vitro Significant inhibition of viral replication in Vero cells
and inhibition of Mpro (IC50: 1.20 µM).

[170]

Flavonoid
(flavonol)

Isorhamnetin Hippophae
rhamnoides,
Opuntia ficus-
indica

SARS‑CoV‑2
SARS‑CoV

In vitro Limiting the entry of the SARS‑CoV‑2 pseudotyped
virus.

[279]

Flavonoid
(flavonol)

Herbacetin Linum usitatissi-
mum

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 53.90 µM). [173]

Flavonoid
(isoflavone)

Neobavaisofla-
vone

Psoralea
corylifolia

SARS‑CoV In vitro Inhibition of PLpro (IC50: 18.30 µM). [255]

Flavonoid
(rotenoid)

12α-epi-Millet-
tosin

Millettia
usaramensis

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward the RdRp
enzyme (− 8.0 kcal/mol).

[280]

Flavonoid
(rotenoid)

Usararotenoid A Millettia
usaramensis

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward the RdRp
enzyme (− 8.4 kcal/mol).

[280]

Flavonoid
glycoside

Vicenin Ocimum
sanctum

SARS‑CoV‑2
SARS‑CoV

In silico
In vitro

Favorable binding affinity exhibition toward Inhibition
of Mpro (IC50: 8.97 kcal/mol).

[242]

Flavonoid
glycoside

Isorientin 4′-O-
glucoside 2′
′-O‑p-hydroxy-
benzoate

Ocimum
sanctum

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward Mpro
(8.55 kcal/mol).

[242]

Homoisoflavo-
noid

Brazilin Paubrasilia
echinata,
Caesalpinia
sappan

SARS‑CoV‑2
SARS‑CoV

In vitro Inhibition of SARS‑CoV‑2 RBD/hACE2 dose-depen-
dently; Limiting the SARS‑CoV‑2 pseudotyped virus
entry dose-dependently.

[259]

Biflavonoid Amentoflavone Torreya nucifera SARS‑CoV In vitro Inhibition of Mpro (IC50: 8.3 ± 1.2 µM) dose-depen-
dently.

[275]

Biflavonoid Bilobetin Torreya nucifera SARS‑CoV In vitro Inhibition of Mpro (IC50: 72.3 ± 4.5 µM) dose-depen-
dently.

[275]
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▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Phenolic
compounds

Biflavonoid Ginkgetin Torreya nucifera SARS‑CoV Inhibition of Mpro (IC50: 32.0 ± 1.7 µM) dose-depen-
dently.

[275]

Biflavonoid Sciadopitysin Torreya nucifera SARS‑CoV Inhibition of Mpro (IC50 38.4 ± 0.2 µM) dose-depen-
dently.

[275]

Lignan Nordihydro-
guaiaretic acid

Larrea triden-
tata

SARS‑CoV‑2 In vitro Inhibition of PLpro (IC50: 1.06 µM); Inhibition of non-
structural protein 3 (IC50: 1.62 µM).

[281]

Lignan Savinin Chamaecyparis
taiwanensis

SARS‑CoV
SARS‑CoV‑2

In vitro Inhibition of Mpro (IC50: 25.00 µM). [282]

Lignan glycoside Phillyrin Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of viral replication (IC50: 63.90 µg/ml) in
Vero E6 cells; Reduction of mRNA levels of TNF-α, IL-6,
IL-1β, MCP-1, and IP-10, (markers of pro-inflammatory
cytokine production).

[283]

Arylnaphtalene
lignan

Diphyllin Cleistanthus
collinus

SARS‑CoV‑2 In vitro Reduction of SARS‑CoV‑2 viral titers in Vero cells. [284]

Arylnaphthalene
lactone lignan
glycoside

Cleistanthin B Cleistanthus
collinus

SARS‑CoV‑2 In vitro Reduction of viral titers (EC50: 6.51 µM). [284]

Phenolic acid Ginkgolic acid Ginkgo biloba SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 1.79 ± 0.58 µM); Inhibition
of PLpro (IC50: 16.30 ± 0.64 µM).

[285]

Phenolic acid Anacardic acid Anacardium
occidentale

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 2.07 ± 0.35 µM); Inhibition
of PLpro (IC50: 17.08 ± 1.30 µM).

[285]

Phenolic acid Chlorogenic acid Pimenta dioica SARS‑CoV‑2 In vitro Promising antiviral activity against SARS‑CoV‑2
(IC50: 360 µg/mL)

[286]

Phenolic acid Ellagic acid Rubus fruti-
cosus,
Fragaria
ananassa

SARS‑CoV‑2 In vitro Inhibition of RBD-hACE2 binding (IC50: 2.5 µg/mL). [287]

Phenylethanoid
glycoside

Forsythoside A Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 3.18 µM). [172]

Phenylethanoid
glycoside

Forsythoside B Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 2.88 µM). [172]

Phenylethanoid
glycoside

Forsythoside E Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 6.88 µM). [172]

Phenylethanoid
glycoside

Forsythoside H Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 10.17 µM). [172]

Phenylethanoid
glycoside

Forsythoside I Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 5.47 µM). [172]

Phenylethanoid
glycoside

Isoforsythiaside Forsythia
suspensa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 5.85 µM). [172]

Phenylethanoid
glycoside

Acteoside Scrophularia
ningpoensis,
Byblis liniflora

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 43 nM). [269]

Gingerols 6-Gingerol Zingiber
officinale

SARS‑CoV‑2 In silico
In vitro

Favorable binding affinity with viral proteases (Mpro
with − 15.7591 kJ/mol), RNA binding protein and
S protein; Reduction of viral titers (EC50: 1.38 µM).

[268,
288]
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▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Phenolic
compounds

Stilbenoid Kobophenol A Caragana
chamlagu,
Caragana sini-
ca, Carex folli-
culata

SARS CoV-2 In vitro Inhibition of S protein (IC50: 1.81 µM). [289]

Stilbenoid Resveratrol Polygonum
cuspidatum

SARS‑CoV‑2 In vitro Reduction of the expression of ACE2, the control of
the renin-angiotensin system (RAS), the activation of
the immune system, and the production of pro-in-
flammatory cytokines; Potential inhibitory activity
against RdRp and PLpro of SARS‑CoV‑2; Interfering
with the virusʼs infectious cycle of reproduction;
Reduction of SARS‑CoV‑2 replication in Vero-E6 cells,
as well as in a primary human bronchial epithelial cell
type.

[290–
292]

Stilbenoid Pterostilbene Vaccinium spp.,
Pterocarpus
marsupium

SARS‑CoV‑2 In vitro Reduction of viral titers in Vero E6 (EC50: 19 µM); Inhi-
bition of infection in human primary bronchial epithe-
lial cells.

[292]

Anthraquinone Aloe emodin Aloe barbaden-
sis

SARS‑CoV In vitro Inhibition of Mpro (IC50: 132.00 µM). [247]

Dianthrone Sennoside B Cassia fistula SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 104 nM). [269]

Naphthodian-
throne

Hypericin Hypericum
perforatum

SARS‑CoV‑2 In vitro Reduction of SARS‑CoV‑2 replication in Vero-E6 cells,
as well as in a primary human bronchial epithelial cell
type. Inhibition of Mpro (IC50: 63.6 µM); Inhibition of
PLpro deubiquitinase activity.

[272,
293]

Terpenoids Monoterpenoid
phenol

Carvacrol Thymus vulgaris SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward Mpro
(− 4.0 kcal/Mol).

[94]

Sesquiterpene
glycoside

Tinocordiside Tinospora
cordifolia

SARS‑CoV‑2 In silico
In vitro

Favorable binding affinity exhibition toward Mpro
(8.10 kcal/mol).

[242]

Sesquiterpene
lactone

Arteannuin B Artemisia
annua

SARS‑CoV‑2 In vitro Inhibition of Mpro (EC50: 10.28 ± 1.12 µM). [294,
295]

Sesquiterpene
lactone

Artemisinin Artemisia
annua

SARS‑CoV‑2 In silico
In vitro

Inhibition of Mpro (IC50: 70 µM); Antiviral activity
(EC50: 64.45 ± 2.58 µM); Range of EC50 in different cell
types: 151 to at least 208 µg/mL; The artemisinin-
piperaquine group cleared SARS‑CoV‑2 faster in mild-
to-moderate COVID-19 patients compared to the
control group. Nonetheless, physicians should be cau-
tious of QT interval changes when administering arte-
misinin-piperaquine (an open-label, non-randomized,
and controlled trial).

[294–
299]

Sesquiterpene
lactone

Artesunate Artemisia
annua

SARS‑CoV‑2 In vitro Antiviral activity (EC50: 12.98 ± 5.30 µM); Range of
EC50 in different cell types: 7–12 µg/mL; Inhibition of
Mpro.

[294,
295,
297]

Sesquiterpene
lactone

Artelinic acid Artemisia
annua

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward S protein
(− 7.1 kcal/mol) and Mpro.

[295,
299]

Sesquiterpenoid Ichangin Citrus cavaleriei,
Citrus medica,
Raputiarana
heptaphylla

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward Mpro
(− 8.40 kcal/Mol).

[216]

Diterpenoid Ferruginol Torreya nucifera SARS‑CoV In vitro Inhibition of Mpro (IC50: 49.6 ± 1.5 µM) dose-depen-
dently.

[275]

Diterpenoid Dihydrotanshi-
none I

Salvia miltior-
rhiza

SARS‑CoV‑2
SARS‑CoV

In vitro
In vivo

Inhibition of SARS‑CoV‑2 PLpro (IC50: 0.5861 µM);
Inhibition of Mpro (EC50: 14.40 µM) and PLpro
(EC50: 4.90 µM) of SARS‑CoV.

[217,
300]
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▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Terpenoids Diterpenoid Rosmariquinone Salvia
miltiorrhiza

SARS‑CoV In vitro Inhibition of Mpro (IC50: 21.10 µM); Inhibition of PLpro
(IC50: 30.00 µM).

[217]

Diterpenoid Tanshinone I Salvia
miltiorrhiza

SARS‑CoV‑2
SARS‑CoV

In vitro Reduction of viral titers (EC50: 2.26 µM); Inhibition of
SARS‑CoV‑2 PLpro (IC50: 5.63 µM); Inhibition of Mpro
(EC50: 38.70 µM) and PLpro (EC50: 8.80 µM) of SARS-
CoV.

[217,
301]

Diterpenoid Tanshinone II Salvia
miltiorrhiza

SARS‑CoV‑2 In vitro Inhibition of PLpro (IC50: 1.571 µM). [217]

Diterpenoid Andrographo-
lide

Andrographis
paniculata

SARS‑CoV‑2 In vitro Reduction of viral titers in Calu-3 cell line and Vero E6
cells (EC50: 0.034 µM and 0.28 µM resp.); Inhibition of
Mpro (IC50: 15.05 µM).

[302,
303]

Triterpenoid Ursolic acid Vaccinium spp.,
Ocimum sanc-
tum

SARS‑CoV‑2 In silico
In vitro

Inhibition of Mpro (IC50: 12.57 µM); Favorable binding
affinity exhibition toward Mpro (8.52 kcal/mol);
Favorable binding affinity exhibition toward Mpro
(− 5.9 kcal/mol).

[94,
242,
304]

Triterpenoid Betulinic acid Betula
pubescens,
Ziziphus
mauritiana,
Breynia
fruticosa

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 14.55 µM); Inhibition of
SARS‑CoV‑2 S protein RBD binding to ACE2 of host
cell (IC50: 0.1 µM).

[210,
304]

Triterpenoid Oleanolic acid Betula
pubescens,
Ziziphus
mauritiana,
Breynia
fruticosa

SARS‑CoV‑2 In silico
In vitro

Favorable binding affinity exhibition toward Mpro
(− 6.0 kcal/mol); Inhibition of SARS‑CoV‑2 S protein
RBD binding to ACE2 of host cell (IC50: 1 µM).

[94,
210]

Triterpenoid Betulin Betula
pubescens,
Ziziphus
mauritiana

SARS‑CoV‑2 In vitro Inhibition of Mpro (IC50: 89.67 µM). [304]

Triterpenoid Glycyrrhetinic
acid

Glycyrrhiza
glabra

SARS‑CoV‑2 In vitro Inhibition of S protein-ACE2 binding between
SARS‑CoV‑2 and host cell (IC50: 10 µM).

[210]

Triterpenoid Maslinic acid Olea europaea SARS‑CoV‑2 In vitro Inhibition of Mpro through a protease assay
(IC50: 3.22 µM).

[304]

Triterpenoid β-Amyrin Pisum sativum
Brassica olera-
cea
Celastrus hindsii

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward Mpro
(− 8.79 kcal/Mol).

[216]

Triterpenoid Iguesterin Tripterygium
regelii

SARS‑CoV In vitro Inhibition of Mpro (IC50: 2.6 ± 0.3 µM). [305]

Triterpenoid Celastrol Tripterygium
regelii

SARS‑CoV In vitro Inhibition of Mpro (IC50: 10.3 ± 0.2 µM). [305]

Triterpenoid Pristimerin Tripterygium
regelii

SARS‑CoV In vitro Inhibition of Mpro (IC50: 5.5 ± 0.7 µM). [305]

Triterpenoid Tingenone Tripterygium
regelii

SARS‑CoV In vitro Inhibition of Mpro (IC50: 9.9 µM). [305]

Triterpenoid
(limonoid)

Deacetylnomilin Citrus spp. SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward Mpro
(− 8.35 kcal/Mol).

[216]

Triterpenoid
(saponin)

Glycyrrhizin Glycyrrhiza
glabra

SARS‑CoV‑2 In silico
In vitro

Reduction of viral titers (EC50: 0.44mg/ml); Dose-
dependent inhibition of Mpro.

[306,
307]
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▶ Table 2 Plant SMs with potential inhibitory effects against SARS‑CoV‑2 and SARS‑CoV. continued

Chemical
superclass

Chemical class Metabolite(s) Plant Virus Study Function Ref.

Terpenoids Triterpenoid
(saponin)

Saikosaponins U
and V

Bupleurum
spp.,
Heteromorpha
spp.,
Scrophularia
scorodonia

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward S protein
(− 7.272 and − 8.358 Kcal/Mol respectively).

[308]

Triterpenoid
(saponin)

Platycodin D Platycodon
grandiflorus

SARS‑CoV‑2 In vitro Limiting the SARS‑CoV‑2 pseudotyped virus entrance
into H1299/ACE2 (EC50: 0.69 µM) and H1299/ACE2-
TMPRSS2 cells (EC50: 0.72 µM).

[309]

Steroidal
sapogenin

Sarsasapogenin Anemarrhena
asphodeloides

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward non-
structural protein 15 (− 8.5 kcal/Mol).

[310]

Cardiac glycoside Ouabain Acokanthera
schimperi,
Strophanthus
Gratus,
Breynia fru-
ticosa

SARS‑CoV‑2 In vitro Reduction of viral RNA when added pre-infection and
post-entry (IC50: 0.024 µM).

[311]

Cardiac glycoside Digoxin Digitalis lanata SARS‑CoV‑2 In vitro Reduction of viral RNA when added pre-infection and
post-entry (EC50: 0.043 µM).

[311]

Withanolide
glycoside

Withanoside V Withania
somnifera

SARS‑CoV‑2 In silico Favorable binding affinity exhibition toward Mpro
(IC50: 10.32 kcal/mol).

[242]

Miscellane-
ous com-
pounds

Cinnamic amide Terrestriamide Tribulus terrest-
ris, Ocimum
sanctum

SARS‑CoV In vitro Inhibition of PLpro (IC50: 21.50 µM). [312]

Cinnamic amide N-trans-caf-
feoyltyramine

Tribulus
terrestris

SARS‑CoV In vitro Inhibition of PLpro (IC50: 44.40 µM) [312]

Cinnamic amide N-trans-coumar-
oyltyramine

Tribulus
terrestris

SARS‑CoV In vitro Inhibition of PLpro (IC50: 38.80 µM). [312]

Cinnamic amide N-trans-feru-
loyloctopamine

Tribulus
terrestris

SARS‑CoV In vitro Inhibition of PLpro (IC50: 26.60 µM). [312]

Cinnamic amide N-trans-feru-
loyltyramine

Tribulus
terrestris

SARS‑CoV In vitro Inhibition of PLpro (IC50: 70.10 µM). [312]

Cinnamic amide Terrestrimine Tribulus
terrestris

SARS‑CoV In vitro Inhibition of PLpro (IC50: 15.80 µM). [312]

Glucosinolate Sinigrin Isatis indigotica SARS‑CoV In vitro Inhibition of Mpro (IC50: 121.00 µM). [247]

Lectin Griffithsin Griffithsia
capitata

SARS‑CoV In vitro
In vivo

Antiviral activity (EC50:48–94 nM); Inhibition of SARS-
CoV S protein; Reduction of SARS‑CoV infectivity in
vivo (mouse-adapted SARS‑CoV) and in vitro investi-
gations; Recombinant griffithsin exhibited IC50 values
of 34.0 and 5.4 nM against Delta and Omicron vari-
ants, respectively; Q-Griffithsin, when combined with
carrageenan, exhibited a synergistic effect (EC50: 0.2–
3.8 µg/mL), and the combination index was less than
1, indicating a strong synergistic effect; Inhibition of
SARS‑CoV‑2 pseudovirus infection (IC50: 63 nmol/L);
Inhibition of SARS‑CoV‑2 S-mediated cell to cell fusion
(IC50: 323 nmol/L).

[313–
316]
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cal formulations and delivery systems, including nanosuspen-
sions, solid dispersions, microspheres, crystals, self-nanoemulsify-
ing drug delivery systems (SNEDDS), and self-microemulsifying
drug delivery systems (SMEDDS), have been developed and uti-
lized to deliver natural products with antiviral properties [109].
These diverse technologies offer effective and reliable delivery of
medicinal phytochemicals, addressing the challenges of bioavail-
ability and solubility in antiviral drug administration.

A number of plant secondary metabolites have been subjected
to clinical trials, with some trial outcomes still pending publica-
tion. These trials assess the efficacy of phytochemicals as stand-
alone compounds, in combination with other natural bioactive
compounds, drugs, or polyphenol-rich extracts and are specifi-
cally enumerated in ▶ Table 3. The list is sourced from Clini-
calTrials.gov (accessed on June 20, 2023). As previously men-
tioned, numerous plant secondary metabolites have demonstrat-
ed favorable results in in silico, in vitro, and in vivo studies. Consid-
ering this, there is an optimistic outlook for the continuation of
further clinical trials on these promising plant secondary metabo-
lites.
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Plant Metabolites and Their Effectiveness
in Treatment of COVID-19

Plant compounds can be classified into primary and SMs [52]. Pri-
mary metabolites like proteins, lipids, and carbohydrates directly
contribute to plant growth and development [52]. SMs, on the
other hand, are versatile molecules that are often involved in en-
vironmental communication and plant defense [110]. They are
also responsible for plant taste, odor, and color [52]. SMs are
low-molecular-weight compounds and are biosynthetically de-
rived from primary metabolites but are restricted to specific taxo-
nomic groups or families in the plant kingdom [50,110]. They are
synthesized by specialized cell types at certain developmental
stages [111]. SMs are found to have ecological functions, such as
attracting pollinators, chemical adaptation to stress, or defense
against predators or harmful microorganisms [111,112].

Medicinal products from plants or herbs account for about
35% of the global medicine market (valued at USD1.1 trillion)
[113]. As a source of antiviral chemicals, plant SMs offer a less ex-
pensive alternative to conventional medicines [114]. Metabolites
of different medicinal plants and their mechanisms in dealing with
SARS‑CoV‑2 and other coronaviruses are summarized in ▶ Table
2.
Flavonoids
Flavonoids are SM compounds found in many fruits, seeds, and
leaves that act as a defensive mechanism against abiotic stressors
[115–117]. The structure of flavonoids consists of a 15-carbon
skeleton composed of two benzene rings joined by a pyran ring
[118].

A large number of compounds belonging to this group show
significant antiviral effects [119,120]. Flavonoids have antiviral
properties that hinder the virusʼs ability to attach and penetrate
cells, impede its growth and transmission, stop the production of
186 Alipour Z et
viral proteins and coatings formed by glycoprotein complexes
[120]. Flavonoids also aid the communication process within the
infected cell by activating transcription factors and releasing cyto-
kines [121].

To date, a large number of flavonoids have been identified
from various plant species. Based on their chemical structure, de-
gree of oxidation, and substitution pattern of the C ring (hetero-
cyclic pyran ring), they are divided into flavanones, flavonols, fla-
vanols, flavones, isoflavonoids, chalcones, and anthocyanidins
[119]. Considering that these compounds have shown potential
antiviral properties against coronaviruses, they may also be effec-
tive in the treatment of COVID-19 [122].

Silymarin is obtained from the plant source Silybum marianum,
native to Crete, Greece, Iran, and Afghanistan, and is a blend of
flavonolignans (silybin, isosilybin, silychristin, and siliandrin) and
a flavonol (taxifolin) [123]. It is widely recognized for its liver-pro-
tective properties [124]. Its anti-SARS‑CoV‑2 potential stems from
its ability to decrease the expression of the host cell surface recep-
tor TMPRSS2 [123]. Hanafy et al. produced bovine serum albumin
nanoparticles loaded with silymarin and curcumin to build an in-
halable delivery method for pneumonia treatment [125]. They
discovered that silymarin has potential antiviral efficacy against
SARS‑CoV‑2 in vitro at a dose of 25 g/mL [125]. According to the
findings, silymarinʼs anti-inflammatory and antioxidant properties
may protect the lungs during SARS‑CoV‑2 infection and inhibit
the ACE2 receptor, preventing viral entry [125]. Currently, a phase
III clinical study (NCT04394208) is recruiting participants to as-
sess the clinical outcomes of silymarin in adults with COVID-19
pneumonia under standard care, with either a placebo or oral sily-
marin [126].

One of the main concerns with the administration of flavo-
noids is that they have limited absorption and bioavailability when
taken orally due to their hydrophilic nature as glycosides [127,
128]. Flavonoids are extensively metabolized in the intestine and
liver, resulting in the formation of conjugated forms that facilitate
their elimination [127]. Consequently, the low bioavailability of
flavonoids poses a challenge for oral administration [127]. To ad-
dress this issue, various strategies have been employed, such as
using nano-formulations to improve intestinal absorption, em-
ploying microemulsions or complexing with β-cyclodextrin to en-
hance bioavailability [127]. Inhalation of flavonoids encapsulated
in smart nanoparticles targeting ACE2 receptors has been shown
to increase bioavailability and efficacy in mice [122]. Additionally,
nano-emulsion and nano-liposomal formulations have been found
to improve oral bioavailability, therapeutic efficacy, and stability
of flavonoids like naringenin and fisetin, with the latter exhibiting
a 47-fold increase in bioavailability compared to the free form
[129,130].

Here, we focus on the flavonoids quercetin, baicalin, baicalein,
kaempferol, luteolin, and a group of flavan-3-ols known as cate-
chins, which have shown promise in COVID-19 drug discovery
and development. These compounds have been the subject of nu-
merous studies due to their potential antiviral effects against
SARS-CoV‑2.
al. The Potential of… Planta Med 2024; 90: 172–203 | © 2023. Thieme. All rights reserved.



▶ Table 3 List of promising SMs undergoing clinical trials as of June 20, 2023. Retrieved from www.clinicaltrials.gov.

SM Official title of the clinical trial Intervention/treatment Results ClinicalTrials.
gov identifier

Refer-
ences

Q-Griffithsin A phase 1a safety, acceptability and pharma-
cokinetics study of Q-griffithsin intranasal
spray for broad-spectrum coronavirus pre-
exposure prophylaxis: a study of the prevent-
COVID‑19 program

Drug: Q-Griffithsin intranasal spray
administered as a single dose

Not posted yet NCT05122260 –

Ferulic acid Retrospective observational study to describe
the evolution of SARS‑CoV‑2 disease and the
profile of patients treated or not with Imuno
TF and a combination of nutraceuticals

and who have tested positive for COVID-19

Dietary supplement: ImmunoFormula-
tion (ImmunoFormulation contains Imu-
no TF, selenium, zinc, ascorbic acid, vita-
min D, Miodesin, resveratrol, Spirulina,
ferulic acid, glucosamine, N-acetylcys-
teine, and SiliciuMax.)

Not posted yet NCT04666753 –

Luteolin Effects of palmitoylethanolamide co- ultra-
micronized with luteoline (Pea-lut) on frontal
lobe functions and GABAergic transmission in
long COVID patients. An 8-week randomized
controlled trial

Dietary supplement: palmitoylethanola-
mide co-ultramicronized with antioxi-
dant flavonoid luteolin (PEA‑LUT)

Not posted yet NCT05311852 –

Olfactory dysfunction after COVID-19: con-
ventional therapy versus intervention treat-
ment with co-ultraPEALut

Combination product: co-ultraPEALut Not posted yet NCT04853836 –

Quercetin A prospective, randomized, open-labelled,
controlled trial to study the adjuvant benefits
of Quercetin Phytosome in patients with di-
agnosis of COVID-19

Drug: Standard COVID-19 care
Dietary supplement: Quercetin Phyto-
some

The supplementation
demonstrated notable re-
ductions in the hospi-
talization rate (9.2% vs.
28.9%), length of hospital
stay (1.6 vs. 6.8 days),
need for oxygen therapy
(1.3 vs. 19.7%), and
symptom severity when
compared to the control
group.

NCT04578158 [317]

Study to investigate the benefits of dietary
supplement quercetin for early symptoms of
COVID-19

Drug: standard of care for COVID-19 as
per the hospital guidelines
Dietary supplement: Quercetin Phyto-
some (QP)

The results indicated that
quercetin not only expe-
dited the conversion of
positive molecular test re-
sults to negative but also
alleviated the severity of
COVID-19 symptoms.
The number of patients
hospitalized was lower
than in the control group.

NCT04861298 [318,
319]

The study of quadruple therapy zinc, querce-
tin, bromelain and vitamin C on the clinical
outcomes of patients infected with COVID-19

Drug: quercetin
Dietary supplement: bromelain
Drug: Zinc
Drug: vitamin C

Not posted yet NCT04468139 –

Treatment benefits of flavonoids quercetin
and curcumin supplements for mild symp-
toms of COVID-19

Drug: standard of care

Dietary supplement: investigational
treatment

Not posted yet NCT05130671 –

Randomized, placebo-controlled clinical trial
to evaluate the efficacy of an oral nutritional
supplement based on quercetin in the pre-
vention of COVID-19 infection for a duration
of 3 months

Dietary supplement: quercetin Not posted yet NCT05037240 –

Complementary therapy of dietary supple-
ments curcumin, quercetin and vitamin D3
for mild to moderate symptoms of COVID-19

Dietary supplement: complementary
therapy
Drug: standard of care

Not posted yet NCT04603690 –

continued next page
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▶ Table 3 List of promising SMs undergoing clinical trials as of June 20, 2023. Retrieved from www.clinicaltrials.gov. continued

SM Official title of the clinical trial Intervention/treatment Results ClinicalTrials.
gov identifier

Refer-
ences

Quercetin The effectiveness of phytotherapy in the
treatment of SARS-COV2 (COVID-19)

Drug: quercetin Not posted yet NCT04851821 –

Efficacy of Psidii guavaʼs extract for mild
and symptomless coronavirus disease-19
(COVID-19)

Drug: extract Psidii guava
Combination product: standard therapy
for COVID-19 patient

Not posted yet NCT04810728 –

Safety and efficacy of hydroxychloroquine for
the treatment & prevention of coronavirus
disease 2019 (COVID-19) caused by severe
acute respiratory syndrome coronavirus 2
(SARS‑CoV‑2)

Drug: hydroxychloroquine
Dietary supplement: vitamins and min-
erals
Drug: azithromycin

Not posted yet NCT04590274 –

A comparative randomized clinical study on
COVID-19 positive hospitalized patients sup-
plemented with NASAFYTOL

Dietary supplement: NASAFYTOL (NA-
SAFYTOL is a dietary supplement that
contains a mixture of curcumin, querce-
tin, and vitamin D.)
Dietary supplement: FULTIUM‑D3 800
Drug: standard of care treatment

Not posted yet NCT04844658 –

Epigallocate-
chin-3-gal-
late (EGCG)

A multicenter, double-blind, randomized,
placebo-controlled clinical trial to protect
health workers against COVID-19 by Using
Previfenon as chemoprophylaxis during a
SARS‑CoV‑2 outbreak. The HERD study

Drug: Previfenon (EGCG) Not posted yet NCT04446065 –

Curcumin The effect of a mixture of micellized curcu-
min/Boswellia serrata/ascorbic acid on health-
related quality of life in patients with post-
acute COVID-19 syndrome

Dietary supplement: curcumin/Boswellia
serrata/ascorbic acid mixture

Not posted yet NCT05150782 –

Treatment benefits of flavonoids quercetin
and curcumin supplements for mild symp-
toms of COVID-19

Drug: standard of care

Dietary supplement: investigational
treatment

Not posted yet NCT05130671 –

Complementary therapy of dietary supple-
ments curcumin, quercetin and vitamin D3
for mild to moderate symptoms of COVID-19

Dietary supplement: complementary
therapy
Drug: standard of care

Not posted yet NCT04603690 –

A phase III, double-blind, controlled clinical
study designed to evaluate the effect of
CimetrA in patients diagnosed with COVID-19

Drug: CimetrA-1 (CimetrA-1 contains a
combination of curcumin (40mg),
frankincense extract (30mg), and ascor-
bic acid (120mg).)
Drug: CimetrA-2
(CimetrA-2 contains a combination of
curcumin (28mg), frankincense extract
(21mg), and ascorbic acid (84mg).)

Not posted yet NCT04802382 –

A phase II, controlled clinical study designed
to evaluate the effect of ArtemiC in patients
diagnosed with COVID-19

Drug: ArtemiC (ArtemiC contains a
combination of artemisinin (12mg),
curcumin (40mg), frankincense extract
(30mg) and ascorbic acid (120mg).

Not posted yet NCT04382040 –

A Phase II b, double blind, placebo-controlled
clinical study designed to evaluate the effect
of CimetrA in patients diagnosed with COVID-
19

Drug: treatment administration (twice a
day)

Not posted yet NCT05037162 –

Oral nutritional supplements in treatment of
elderly mild-to- moderate COVID-19 (ONSI-
TEMC)

Dietary supplement: oral nutritional
supplements

Not posted yet NCT05629975 –

continued next page
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▶ Table 3 List of promising SMs undergoing clinical trials as of June 20, 2023. Retrieved from www.clinicaltrials.gov. continued

SM Official title of the clinical trial Intervention/treatment Results ClinicalTrials.
gov identifier

Refer-
ences

Curcumin A comparative randomized clinical study on
COVID-19 positive hospitalized patients sup-
plemented with NASAFYTOL

Dietary supplement: NASAFYTOL
(NASAFYTOL is a dietary supplement
that contains a mixture of curcumin,
quercetin, and vitamin D.)
Dietary supplement: FULTIUM -D3 800
Drug: standard of care treatment

Not posted yet NCT04844658 –

Resveratrol Randomized double-blind placebo-controlled
proof-of- concept trial of resveratrol, a plant
polyphenol, for the outpatient treatment of
mild coronavirus disease (COVID- 19)

Drug: resveratrol
Dietary supplement: vitamin D3

The resveratrol group ex-
hibited a lower incidence
of hospitalization, COVID-
19-related Accident and
emergency visits, and
pneumonia when com-
pared to the placebo
group

NCT04400890 [320]

A pilot randomized controlled clinical study of
resveratrol for discharged COVID 19 patients
in order to evaluate its therapeutic effects
against fibrosis

Drug: resveratrol Not posted yet NCT04799743 –

Can SARS‑CoV‑2 viral shedding in COVID-19
disease be reduced by resveratrol- assisted
zinc ingestion, a direct inhibitor of SARS-
CoV‑2-RNA polymerase? a single blinded
phase II protocol (reszinate trial)

Dietary supplement: zinc picolinate

Dietary supplement: resveratrol

Not posted yet NCT04542993 –

Retrospective observational study to describe
the evolution of SARS‑CoV‑2 disease and the
profile of patients treated or not with Imuno
TF and a combination of nutraceuticals

and who have tested positive for COVID-19

Dietary supplement: ImmunoFormula-
tion (ImmunoFormulation contains Imu-
no TF, selenium, zinc, ascorbic acid, vita-
min D, Miodesin, resveratrol, Spirulina,
ferulic acid, glucosamine, N-acetylcys-
teine, and SiliciuMax.)

Not posted yet NCT04666753 –

Oleuropein Assessment of the clinical effectiveness of
standardized olive leaf capsules; as a co-ther-
apy in the treatment of non-hospitalized
COVID-19 patients; a randomized clinical trial

Dietary supplement: NusaPure stan-
dardized olive leaves capsule, 750mg
(50% oleuropein)

Not posted yet NCT04873349 –

Evaluation of the immunomodulatory and
preventive effects of olive leaf tea against
COVID-19

Dietary supplement: olive leaf tea Not posted yet NCT05222347 –
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Quercetin

Quercetin is a flavonoid found in vegetables such as onions, dill,
and cilantro and fruits such as capers, apples, and berries [131].
Molecular docking and SPR/FRET-based bioassays, as well as mu-
tagenesis studies, indicated the potential antiviral effect of quer-
cetin and its derivatives by inhibiting the Mpro of the SARS‑CoV
virus [132]. Considering the similarity of more than 95% of the
gene encoding Mpro in SARS‑CoV‑2 with the same gene in the
SARS‑CoV virus, Mpro inhibitors are considered promising drugs
for COVID-19 [114]. Quercetin exhibited more than 80% inhib-
itory activity on recombinant Mpro expressed in Pichia pastoris
yeast in laboratory conditions (with an IC50 value of 73 µM)
[133]. Recent computational studies and data from molecular
docking also indicated that this molecule is one of the potential
inhibitors of the Mpro of the SARS‑CoV‑2 virus [134–136].

According to Cherrak et al., quercetin-3-O-rhamnoside and
quercetin-3-O-neohesperidoside display a strong inhibitory activ-
Alipour Z et al. The Potential of… Planta Med 2024; 90: 172–203 |© 2023. Thieme. All rights re
ity on SARS‑CoV‑2 Mpro [137]. Surprisingly, it has been shown
that quercetin and quercetin-3-O-glucoside form better bonds
with PLpro and Mpro viral proteins compared to remdesivir as a
positive control [138]. Quercetin-3-O-glucoside had the highest
PLpro binding score among the tested molecules [138]. In addi-
tion, a computer study conducted by Joshi et al. showed that
quercetin-3-O-vicianoside, quercetin-3-O-glucuronide-7-O-gluco-
side, and quercetin-7-O-galactoside had low binding energy with
the Mpro of the SARS‑CoV‑2 virus [139].

Quercetin and its derivatives show high binding energy with
other drug targets such as S protein, ACE2 [140–144], and RdRp
[145,146]. Ascorbate and quercetin work synergistically to treat
COVID-19 due to their shared antiviral and immunomodulatory
effects, as well as ascorbateʼs ability to recycle quercetin [147].

Isoquercetin is the 3-O-glucoside of quercetin [148]. It has a
higher accumulation rate than quercetin in the intestinal mucosa,
where it is converted to quercetin, which is then absorbed by en-
189served.
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terocytes, transported to the liver, released into circulation, and
distributed to organs, primarily as metabolic conjugates [148]. In
general, isoquercetin is less active than quercetin in vitro and ex
vivo, but it is equally or more active in vivo, suggesting that it is
largely a more absorbable precursor to quercetin, with better
pharmacokinetics [148].

However, there are some aspects hampering the utilization of
quercetin as a drug, such as its low absorption and bioavailability,
quick metabolism, and interindividual variability [149,150]. Se-
rum albumin sequesters quercetin, contributing to its poor bio-
availability [151]. Oral administration of isoquercetin, on the oth-
er hand, has much higher bioavailability than quercetin itself
[152]. Isoquercetin also has a lower affinity for albumin, suggest-
ing that it is less sequestered in the intestines and blood [151]. It
has been shown that quercetin accumulates in red blood cells and
may be removed by albumin, indicating that albumin may operate
as a quercetin transporter in the body [149,153]. Furthermore,
quercetin metabolites, such as quercetin 3-O-glucuronide and
isorhamnetin, have physiological features comparable to the agly-
cone form, including antiviral capabilities [154–156].

Kaempferol

Kaempferol is another flavonoid that belongs to the flavonol sub-
class. According to a study conducted by Schwarz et al. in 2013,
kaempferol derivatives containing a rhamnose residue demon-
strate significant effectiveness in inhibiting the 3a ion channel, a
channel crucial to the intricate release mechanism of SARS‑CoV
[157]. The researchers propose that viral ion channels, in general,
hold promise as targets for developing antiviral agents [157]. Spe-
cifically, they highlight kaempferol glycosides as strong candi-
dates for targeting the 3a channel proteins of coronaviruses
[157]. Moreover, in a study conducted by Shaldam et al. in 2021,
it was found that kaempferol exhibits one of the strongest inter-
actions with the target enzymes of SARS‑CoV‑2, namely Mpro and
RdRp [158]. As a result, it may be considered an effective inhibitor
for SARS‑CoV‑2 [158].

Catechins

Catechins and their derivatives, including (−)-epigallocatechin-3-
gallate (EGCG), (−)-epicatechingallate (ECG), and (−)-epigalloca-
techin (EGC), belong to the subclass of flavanols and have many
medicinal properties [159]. Considering the ability of catechins
to bind to the viral S protein and ACE2 of the host cell, they can
be considered as an option for treating COVID-19 [160].

In a study conducted by Henss et al. among the different cate-
chins, EGCG was particularly effective in inhibiting the SARS-
CoV‑2 virus and showed no toxicity at effective concentrations
[161]. EGCG also prevented SARS‑CoV‑2 from binding to ACE2
when used before COVID-19 infection [161]. EGCG was found to
reduce virus infections in vitro by preventing the entry of SARS-
CoV‑2, as well as MERS‑CoV and SARS‑CoV pseudo-typed lentivi-
ral vectors, indicating a more general antiviral effect of this com-
pound [161]. In contrast, epicatechin (EC) did not show any effect
in inhibiting SARS‑CoV‑2 and other coronaviruses [161]. In one
study, catechin performed better than six conventional drugs,
namely tenofovir, ritonavir, dolutegravir, boceprevir, tinofovirala-
fenamide, and zanamivir, in serving as a multi-target drug be-
190 Alipour Z et
cause it exhibits the highest binding strength to the five proteins
that the virus requires to infiltrate the host cell, namely the recep-
tor-binding domain (RBD), cathepsin L, N protein, Mpro, and non-
structural protein 6 [162]. In a separate study, all types of cate-
chins, including ECGC, indicated a considerable affinity to the S
protein of the SARS‑CoV‑2 virus [163]. Moreover, Rabezanahary
et al. demonstrated the inhibitory effects of EGCG and isoquerce-
tin against SARS‑CoV‑2 in vitro and proved their substantial antivi-
ral synergistic effects with remdesivir [164].

It is important to note that a clinical phase II/III trial is currently
underway (NCT04446065) to evaluate the chemoprophylactic ef-
fects of EGCG on COVID-19 in healthy workers [165].

Baicalin and baicalein

Baicalin and baicalein are two compounds that are primarily ob-
tained from the root of Scutellaria baicalensis, an East Asian plant
[166]. In traditional Chinese medicine, this plant is used to treat
obesity, hypertension, and dysentery, as well as inflammatory dis-
eases, arteriosclerosis, and the common cold [167,168].

When baicalin is metabolized in the intestine, it transforms into
baicalein [169]. Numerous studies have reported that both of
these compounds have an inhibitory effect against the SARS-
COV‑2 virus, particularly 3CLpro [170–173].

Zandi et al. have demonstrated that baicalein and its aglycon
baicalein exhibit in vitro anti-SARS‑CoV‑2 activity, directly inhib-
iting the activity of SARS‑CoV‑2 RdRp [169]. They reported an
EC50 of 4.5 µM and an EC90 of 7.6 µM for baicalein [169]. Su et al.
found the binding activity of baicalein with Mpro and confirmed
its anti-SARS‑CoV‑2 activity in vitro [172]. Moreover, their further
study highlighted the presence of baicalin and baicalein, two bio-
active ingredients of Shuanghuanglian (a Chinese traditional med-
icine), which provided supporting evidence for the potential anti-
viral activity of Shuanghuanglian [172]. However, the exact antivi-
ral ability of baicalin and baicalein requires verification through
animal models or clinical trials.

Luteolin

Luteolin is a flavonoid present in edible plants, including oregano,
celery, parsley, and juniper berries [174]. Investigations into the
properties of luteolin against the SARS‑CoV virus have demon-
strated its antiviral nature [175,176]. Its potential in preventing
the entry of SARS‑CoV‑2 into cells has been supported by various
analyses, including the relaxed complex scheme analysis, classical
molecular docking simulations, and metadynamics simulations
[177]. Researchers such as Xie et al. conducted a comprehensive
study employing system pharmacology and bioinformatic analy-
sis, which revealed that luteolin holds significant promise as a
treatment for COVID-19/asthma comorbidity [178]. This is attrib-
uted to its antiviral effects, regulation of inflammation and im-
mune responses, reduction in oxidative stress, and modulation of
blood circulation [178]. Clinical findings further suggest that oral
supplementation of luteolin improves the recovery of olfactory
function following COVID-19 [179].

Recent studies showed the significant inhibitory activity of lu-
teolin against the Mpro of SARS‑CoV‑2, papainlike proteinase. In
addition, luteolin prevents the coronavirus from binding to hu-
man cell receptors and entering the cells [180,181].
al. The Potential of… Planta Med 2024; 90: 172–203 | © 2023. Thieme. All rights reserved.
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Alkaloids
Alkaloids are a large group of natural compounds that contain at
least one nitrogen atom, often located in a heterocyclic ring
[182].

Alkaloids are abundant in the human diet [183]. Edible plants
such as coffee, cocoa, tea, tomatoes, and potatoes contain alka-
loid compounds [183]. In previous studies on the inhibitory effect
of plant metabolites on the SARS‑CoV virus, alkaloids such as ber-
berrubine, berberine, berbamine, dicentrine, coptisine jatrorrhi-
zine, palmatine, tetrandrine, fangchinoline, and cepharanthine
have been reported as inhibitors of SARS‑CoV proliferation [184–
187]. Lycorine, found in the Amaryllidaceae family, also has a po-
tential antiviral effect against SARS‑CoV [188].

Schizanthine z is an alkaloid obtained from Schizanthus porri-
gens. This compound has an inhibitory effect against the PLpro of
SARS‑CoV‑2 [189]. Cryptoquindoline and cryptospirolepine, two
alkaloids from Cryptolepis sanguinolenta, showed an inhibitory ef-
fect against the Mpro of SARS‑CoV‑2 [190]. Other alkaloids that
have an inhibitory effect against the Mpro of this virus are aniso-
tine, adhatodine, vasicoline, and vasicine, which are found in the
Justicia adhatoda plant [191]. In addition, an in silico investigation
found that thalimonine and sophaline Dmay have antiviral activity
against SARS‑CoV‑2 Mpro [192]. A number of alkaloids also
showed an inhibitory activity against the RdRp of SARS‑CoV‑2
including several compounds from Cryptolepis sanguinolenta in-
cluding cryptomisrine, cryptospirolepine, cryptoquindoline, and
biscryptolepine [190].

Colchicine

Colchicine, one of the oldest anti-inflammatory medications, is a
tropolone alkaloid derived from the plants Colchicum autumnale
and Gloriosa superba [193]. Colchicine gained approval from the
US FDA in 2009 for treating familial Mediterranean fever (FMF)
and preventing and managing gout attacks [194]. According to a
study by Karatza et al., colchicine is a promising drug for COVID-
19 patients [193]. Through their research, various dosage regi-
mens were explored, with the findings indicating that a safe and
effective approach involves a dosage of 0.5 mg administered
twice daily [193]. For patients with clearance impairment, lower
doses of 0.25mg twice or thrice daily should be used [193]. It is
important to design dosage regimens based on individual patient
needs since colchicine has a narrow therapeutic index [193].

Colchicine can indirectly obstruct the NLRP3 inflammasome, a
large molecular complex responsible for detecting danger and ini-
tiating a localized or systemic inflammatory response by releasing
pro-inflammatory cytokines, such as IL-1β [195–197]. Moreover,
colchicine disrupts various inflammatory processes such as the
movement, attachment, and activation of neutrophils, as well as
the triggering of inflammasomes and the release of cytokines
[198]. Considering the impact of colchicine on reducing the activ-
ity of various inflammatory pathways and its ability to adjust in-
nate immunity, it is plausible to consider it as a potential treat-
ment for COVID-19 [198]. This is particularly relevant because
the autoinflammation of both the innate and adaptive immune
systems is a distinguishing feature of the COVID-19 disease [198].
Alipour Z et al. The Potential of… Planta Med 2024; 90: 172–203 |© 2023. Thieme. All rights re
Notably, colchicine has been examined in both outpatient and
inpatient settings for its effectiveness against COVID-19 [199–
207].
Terpenoids
Terpenoids are the most abundant and diverse class of naturally
occurring phytoconstituents [208]. They are responsible for the
scent, flavor, and coloration of plants [208]. Their categorization
is determined by the number of isoprene units (C5H8), which
serve as the building blocks of terpenoids [208].

In a computational investigation, numerous components from
essential oils, such as cinnamaldehyde, carvacrol, cinnamyl ace-
tate, anethole, pulegone, and thymol, have been identified as
obstructing the SARS‑CoV‑2 virus S protein [209]. In a study by
Carino et al., betulinic and oleanolic acids were reported to reduce
the binding of S protein RBD to the ACE2 receptor in a concen-
tration-dependent manner [210]. An in silico study found that 3-
oxoglycyrrhetinic acid inhibited SARS‑CoV‑2 Mpro [211].

The effect of bioactive molecules from Withania somnifera or
“Indian ginseng” on the Mpro of SARS‑CoV‑2 indicated that the
steroid compound withanoside V has the highest inhibitory effect
on this viral protease among the molecules studied [212]. Other
compounds from this plant, including quercetin-3-O-galactosyl-
rhamnosyl-glucoside, withanoside X, ashwagandhanolide, dihy-
drowithaferin A, and withanolide N, showed a promising inhib-
itory effect on S glycoprotein and nonstructural protein 15 endor-
ibonuclease of SARS‑CoV‑2 [213].

Recent in silico analysis showed the substantial affinity of ter-
penoids from Nigella sativa, including campesterol, cycloeucale-
nol, α-spinasterol, and β-sitosterol, for the viral N-terminal RNA-
binding domain (NRBD) and PLpro of the SARS‑CoV‑2 virus
[214]. Furthermore, The inhibitory activity of bioactive terpenes
against SARS‑CoV‑2 proteins was investigated in another in silico
study [215]. Based on the results, methyl tanshinonate, sugiol,
and cadinol are potential SARS‑CoV‑2 Mpro inhibitors, and 8-hy-
droxyabieta-9,13-dien-12-one, dehydroabieta-7-one, and tanshi-
none I show promise as SARS‑CoV‑2 PLpro inhibitors [215]. De-
acetylnomilin, ichangin, nomilin, and β-amyrin have a high bind-
ing affinity with the Mpro of SARS‑CoV‑2 [216]. Deacetylnomilin
and ichangin, in particular, can interact directly with the catalytic
dyad parts of Mpro [216].

Tanshinones, a class of terpene, have previously been found to
have antiviral properties by inhibiting PLpro SARS‑CoV‑1 [217].

Saponins

Saponins are triterpenoid or steroidal glycosides with a wide range
of medicinal effects, including anti-inflammatory, antiviral, and
antifungal effects [218]. Due to the stimulation of the mammalian
immune system, they are also considered as potential adjuvant
vaccines [219,220].

Glycyrrhizin obtained from the root of Glycyrrhizae radix is a
saponin that has shown inhibitory effects against SARS‑CoV
[221]. This compound shows affinity with the ACE2 receptor of
the cell, which is one of the drug targets of SARS‑CoV‑2 [222].
191served.
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Tannins
Tannins are a group of large polyphenolic compounds consisting
either of several flavan-3-ol units (known as proanthocyanidins) or
of a sugar moiety esterified to a number of organic acids, typically
gallic acid or ellagic acid (referred to as hydrolyzable tannins).
They have many therapeutic properties, among which are antivi-
ral properties [223]. Based on an in silico study conducted on 19
different tannins, three compounds, pedunculagin, tercatain,
and castalin, showed a significant interaction with the catalytic
dyad part (Cys145 and His41) of the Mpro of the SARS‑CoV‑2 vi-
rus [224]. According to the results of a recent study, tannic acid
also has a significant inhibitory effect on the Mpro and TMPRSS2
of the virus [225].
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Conclusion
The global healthcare landscape has undergone a significant
transformation since the onset of the SARS‑CoV‑2 outbreak.
While COVID-19 once posed a dire and widespread threat to hu-
man lives worldwide, the situation has evolved. Thanks to exten-
sive research and the collective efforts of the scientific communi-
ty and healthcare systems, the pandemic phase of COVID-19 has
transitioned into a more manageable state. Despite the progress
made, it is essential to acknowledge that only limited options are
available for the treatment of COVID-19. Nevertheless, the devel-
opment of antiviral drugs has expanded the arsenal of available
therapeutic choices, and mortality rates, once on the rise, have
stabilized. In this new phase, it is crucial to continue exploring
therapeutic and preventative measures. Natural resources includ-
ing plant SMs containing an antiviral agent have the potential to
be used to develop medicinal targets and be considered as an ef-
ficient alternative for chemical drugs.

This comprehensive review has consolidated the latest investi-
gations employing a triad of methodologies, in vitro, in vivo, and in
silico, aimed at identifying prospective plantsʼ secondary metabo-
lites to combat SARS‑CoV‑2. Our inclusion of agents targeting
both anti-SARS‑CoV and anti-MERS‑CoV was due to the striking
similarity between these viruses and SARS‑CoV‑2. Hopefully, this
compilation will facilitate forthcoming laboratory research in the
pursuit of novel therapeutics against SARS‑CoV‑2.
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