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ABSTRACT

Positron emission tomography (PET) is vital for diagnosing

diseases and monitoring treatments. Conventional image re-

construction (IR) techniques like filtered backprojection and

iterative algorithms are powerful but face limitations. PET IR

can be seen as an image-to-image translation. Artificial intelli-

gence (AI) and deep learning (DL) using multilayer neural net-

works enable a new approach to this computer vision task.

This review aims to provide mutual understanding for nuclear

medicine professionals and AI researchers. We outline funda-

mentals of PET imaging as well as state-of-the-art in AI-based

PET IR with its typical algorithms and DL architectures. Advan-

ces improve resolution and contrast recovery, reduce noise,

and remove artifacts via inferred attenuation and scatter cor-

rection, sinogram inpainting, denoising, and super-resolution

refinement. Kernel-priors support list-mode reconstruction,

motion correction, and parametric imaging. Hybrid approa-

ches combine AI with conventional IR. Challenges of AI-assis-

ted PET IR include availability of training data, cross-scanner

compatibility, and the risk of hallucinated lesions. The need

for rigorous evaluations, including quantitative phantom vali-

dation and visual comparison of diagnostic accuracy against

conventional IR, is highlighted along with regulatory issues.

First approved AI-based applications are clinically available,

and its impact is foreseeable. Emerging trends, such as the

integration of multimodal imaging and the use of data from

previous imaging visits, highlight future potentials. Continued

collaborative research promises significant improvements in

image quality, quantitative accuracy, and diagnostic perform-

ance, ultimately leading to the integration of AI-based IR into

routine PET imaging protocols.

Objective and Scope of the Review

The objective of this comprehensive review is to provide a broad
and understandable overview of the current advancements, chal-

lenges, and promising avenues in integrating artificial intelligence
(AI) techniques into the field of positron emission tomography
(PET) image reconstruction (IR). This review is intended for nucle-
ar medicine physicians, medical physicists, nuclear medicine tech-
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nicians and researchers, as well as AI researchers interested in
such applications, and bridges the gap between these fields. By
exploring the intersection of PET IR and AI, this review aims to
provide readers with a clear understanding of how AI-driven ap-
proaches are reshaping the art of PET imaging, enhancing image
quality and diagnostic performance.

The review deals with the IR process, but not with AI-driven a-
nalysis of previously reconstructed PET images, which is covered
in the companion articles in this journal issue. It highlights the po-
tential clinical impact of AI techniques and the ongoing collabora-
tive efforts needed to successfully integrate these innovative
methods into routine PET imaging protocols. Through this broad
scope, the review aims to facilitate meaningful dialogue and in-
spire further collaboration between the nuclear medicine and AI
communities to foster advances that hold promise for the future
of PET imaging. The search strategy for relevant publications in-
cluded an exploration of literature sources spanning from histori-
cal developments and foundational mathematical principles to
contemporary advancements in AI-assisted PET IR to ensure a
comprehensive coverage of the topic.

Fundamentals of PET Imaging

PET imaging has revolutionized medical imaging by providing va-
luable insights into the metabolic processes and targeting dis-
eases occurring within the human body. It provides less anatomi-
cal information than computed tomography (CT) or magnetic
resonance imaging (MRI), so it is usually combined as PET/CT or
PET/MR with image fusion of images from both modalities from
a single hybrid scanner.

PET imaging involves the use of radiopharmaceuticals that
emit positrons, which subsequently annihilate with electrons as
their anti-particles. This results in the simultaneous nearly diame-
tral emission of two photons which are detected by a ring of de-
tectors surrounding the patient. The radiation transport is affec-
ted by absorption and scattering by the surrounding material
causing loss of energy and deviated pathway of photons. The an-
nihilation photons are detected in coincidence on lines-of-re-
sponse between detector pairs and counted by the PET scanner.
Small time differences between the detection of the photons are
used for the time-of-flight (TOF) technique to limit the site of ori-
gin of the photons and thus improve the signal-to-noise ratio.
Measurement effects such as dead time and random coincidences
are corrected. Since radioactive decay follows Poisson statistics,
with lower activity the random noise increases and degrades im-
age quality. A broad spectrum of approved PET tracers is clinically
available to diagnose and monitor many oncologic and non-onco-
logic diseases. Mostly fluorine-18 or gallium-68 serve as the radio-
active label for the metabolic substrates or for the ligands to tar-
get structures. The radioactivity of the PET tracers causes
radiation exposure to the patient and personnel, requiring the
dose to be minimized.

The emission data acquired during a PET acquisition is usually
sorted into sinograms (a sorted collection of projection data ac-
quired at various angles) of cumulated events or in list-mode as
time-stamped events which need resorting prior to further use.

Reconstructed images finally depict the distribution of radiotracer
concentrations in the body which varies over time as determined
by biochemical and physiological conditions. IR is a critical step in
PET imaging, aiming to transform the acquired raw data into ac-
curate and high-quality images with adequate spatial and tem-
poral resolution for diagnostic interpretation [1].

Conventional PET IR: Filtered Backprojection
and Iterative Algorithms

Conventional PET IR methods, such as filtered backprojection
(FBP) and iterative reconstruction algorithms, have been widely
used for several decades. For FBP the IR problem is considered as
a Radon transformation of the image plane to a sinogram [2]
which is solved by use of the central slice theorem using Fourier
transformations [3].

FBP reconstructs images by backprojecting the detected radia-
tion events from sinograms onto the grid of the image space
using filters with precalculated weights analytically derived from
ideal noise-free projection conditions. Empirically determined fil-
ters cut off higher spatial frequencies to limit noise. Despite its
fast calculation, this approach suffers severely from the amplifica-
tion of low-count related noise and from artifacts in high-contrast
imaging situations, resulting in limited spatial resolution and re-
duced lesion detection [1].

Iterative image reconstruction (IIR) methods interpret the re-
construction problem as a system of algebraic equations in which
the vector of a voxelized radioactivity distribution is multiplied by
a (precalculated) transition matrix based on the imaging physics,
the so-called system matrix. It models physical effects such as the
properties of the decay, radiation transport and detection proces-
ses including interaction of radiation within the patient, detector
geometry, detection efficiency, and inherent resolution of the PET
scanner. The matrix product corresponds to the expected projec-
tion data. ▶ Fig. 1 comprehends the main steps of an IIR algo-
rithm to reconstruct PET images from a PET/CT acquisition.

In common, the reconstruction task to invert the linear map-
ping from the given radioactivity distribution (as ground truth)
to the measured detector events (as observation) is an ill-posed
problem. The inversion of the system matrix is practically impos-
sible, not only due to photon count limitations caused by the nat-
ural Poisson statistics of radioactive decays, but also from the high
number of matrix elements with technically unavoidable uncer-
tainties, e. g. of detector efficiencies which can only be measured
with a statistical error. The inversion of such linear mappings can
be achieved by FBP. For the sake of completeness, the Moore-Pen-
rose pseudo-inverse should be mentioned here as a mathematical
tool to find approximate solutions to ill-posed linear problems,
namely for non-square and singular matrices, that don’t have a
true inverse. It is also noise affected so that its calculation by
means of singular value decomposition (SVD) needs an empirical-
ly determined limitation of the singular value spectrum for noise
suppression [4], similar to the filter parameters in FBP reconstruc-
tions.

IIR algorithms aim to estimate the radioactivity distribution
that best fits the measured emission data with respect to the sta-
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tistical properties of the Poisson-distributed raw data from radio-
active decays. They often require many iterations leading to high
computational effort. IIR has been used for oncology PET imaging
since the early 1990 s [5]. To reduce the computer workload,
methods for accelerating convergence were introduced, e. g. Or-
dered Subset Expectation Maximization (OSEM) [6]. As a multi-
million parameter estimation, IIR tends to overfit with high ampli-
tude patterns ("checkerboard effect" or "night sky artefact") as the
number of iterations increases [7]. As an effect of modelling the
Point Spread Function (PSF) of the PET system, Gibbs artifacts
may occur as overestimation of radioactivity levels in small struc-
tures, indicating the need for careful consideration when employ-
ing IIR algorithms for quantitative PET data analysis [8].

Regularized IR methods, like Maximum a Posteriori (MAP) algo-
rithms, combine image likelihood and prior probabilities [9]. The
prior functions as a penalty term to suppress artifacts and im-

prove IIR accuracy by enforcing image smoothness. The feasibility
of anatomical priors was proven in earlier years [10] and research
continues with MR-guided kernels for IIR of reduced dose PET ima-
ging [11].

Despite all achievements, conventional IIR techniques struggle
with noise amplification, limited spatial resolution, and substan-
tial computational demands.

Fundamentals of AI, Machine Learning and
Deep Learning

The emergence of AI has inaugurated a novel era in medical ima-
ging, where data-driven techniques are being employed to en-
hance diagnostics and patient care. Machine Learning (ML) is a
specialized field within AI, focusing on the development of algo-

▶ Fig. 1 Schematic data flow and workflow of conventional iterative image reconstruction, illustrated with a simulated radioactivity distribution
and attenuation maps of an exemplary axial slice of PET/CT in lung cancer. Measured PET sinograms are noisy due to the Poisson statistics of
radioactive decay. The CT image corresponds to the attenuation map needed to pre-correct the measured data in the PET sinogram. The System
Matrix describes the physical conditions of the PET scanner like geometry and detector properties. Prior knowledge and measured data (colored
blue) are used for data preparation and the iterative reconstruction process. The current estimate of the PET image is converted into an estimate of
the corresponding PET sinogram using the system matrix. To compare this estimate with the measured data, an objective function is used, which
may be motivated by prior knowledge such as constraints on the expected image resolution. To optimize this objective function, specific algo-
rithms compute updates to obtain a better estimate of the PET image. The iterative process (colored red) can be terminated after a predefined
number of cycles or when the objective function meets the quality criteria.
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rithms and models that enable systems to learn patterns and
make predictions or decisions from data without being explicitly
programmed [12]. Deep Learning (DL), a sub-field of ML, is char-
acterized by its ability to automatically learn hierarchical features
and complex patterns from large amounts of data by means of
neural networks (NNs).

NNs are computational models inspired by the human brain’s
neural connections. They consist of interconnected nodes, or
"neurons" to simulate nervous activity [13], organized in layers.
Neurons have one or more inputs. Their weighted sum serves as
the input for mostly non-linear activation functions, which then
generate the neurons’ output. NNs may consist of multiple layers
as a cascade of mappings, with hidden layers between input and
output layers, building deep NNs. According to the universal ap-
proximation theorem (UAT), multilayer feedforward networks are
universal approximators [14]. By using the non-linearity between
layers, many practical and useful mappings can be well approxi-
mated if enough layers are used. Introduced to AI to simulate hu-
man-like learning, NNs excel in capturing complex patterns from
data through a process called training.

During the training phase, NNs learn by adjusting their internal
parameters using a designated training dataset. The training is an
iterative process that involves updating the network’s parameters
to minimize the discrepancy between predicted and actual out-
puts (the ground truth), quantified by a loss function. This is typi-
cally achieved by using optimization algorithms like Adam [15],
which adjusts the weights and biases of the network’s layers
based on the gradients of the loss function. Hyperparameters,
such as learning rate and batch size, significantly influence the
rate and stability of convergence in this process. Regularization
techniques, like dropout or L2 regularization, are commonly ap-
plied to prevent overfitting, an undesirable ML behavior that oc-
curs when the ML model provides accurate predictions for train-
ing data but not for new data [14]. Additionally, data
augmentation is used to increase the effective size of the training
dataset. Proper validation techniques and monitoring of training
curves are essential to avoid overfitting and ensure the generaliz-
ability of the trained model [16].

To prevent overfitting and fine-tune the model’s hyperparame-
ters, a separate validation dataset is utilized. This validation data-
set helps in assessing the model’s performance on new, unseen
data and aids in making decisions about architecture and hyper-
parameters. Once the training is complete, the model’s final eval-
uation is conducted using an entirely independent test dataset,
which ensures an objective assessment of the NN’s generalization
capability. For first own impressions, the interested reader may
have a look at https://playground.tensorflow.org.

Learning takes time and resources. The concept of transfer
learning has facilitated the transfer of knowledge gained from
one task to another. In NNs, transfer learning is accomplished by
using a model pretrained on a data-intensive task and then fine-
tuning it on the target task with a smaller dataset to adapt the
learned features. Thereby, training is accelerated and the general-
ization capabilities of AI models are enhanced [17]. Once trained,
NN-based models can provide fast inference, making them suita-
ble for real-time applications.

Architectures of Deep Neural Networks

Some specific DL architectures have emerged as powerful tools,
revolutionizing the field’s capabilities and potential. Images are
too big for normal NNs as the full connection of neurons sum up
to tens and hundreds of million weights. Here, we delve into three
prominent architectures: Convolutional Neural Networks (CNNs),
Generative Adversarial Networks (GANs), and U-Net architec-
tures, exploring their unique characteristics. These architectures,
coupled with breakthroughs in optimization techniques, like
Adam [15] and RMSprop [18], have revolutionized the speed and
precision with of AI-driven image analysis.

Convolutional Neural Networks

CNNs are particularly adept at image analysis due to their inherent
ability to automatically learn spatial, hierarchical (and translation-
al invariant) features from data [19]. Instead of general matrix
multiplications of fully connected NNs, they employ convolutional
layers elementwise multiplication of kernel weights and cor-
responding values in the image to extract spatial patterns and
hierarchical representations. CNNs are highly effective across di-
verse medical imaging tasks, from image transformation and seg-
mentation to disease classification [16], which are also essential
for accurate IR.

The use of convolution kernels in CNNs is the key to translation-
al invariant feature extraction, resulting in a reduction of overall
network parameters and thereby also reducing computational ef-
fort and overfitting. The concept of a kernel has a significant con-
nection to ML, particularly in the context of support vector ma-
chines (SVMs), which are used in classification and regression
tasks in high-dimensional spaces [20]. In ML, a kernel is a function
that computes the similarity or inner product between two data
points in a higher-dimensional feature space, without explicitly
transforming the data into that space. The connection between
the usage of filter kernels in CNNs and the kernel trick of SVMs is
that with both techniques complex patterns are learned and cap-
tured more efficiently by transforming the data into higher di-
mensional spaces.

Kernel weights dictate the features extracted in each channel.
Although the specifics of learned kernels are concealed within a
black box, they correlate with the primate visual cortex’s neural
wiring and vision physiology [21]. These kernels may resemble Ga-
bor functions, well-suited for detecting image textures [22]. CNNs
frequently employ pooling steps to contract adjacent pixels,
achieving dimensional reduction. For a firsthand experience of
CNN performance in classification tasks, interested readers can
explore: https://poloclub.github.io/cnn-explainer/.

U-Nets

U-Net architectures are a class of CNNs specifically designed for se-
mantic segmentation tasks. They derive their name from their char-
acteristic U-shaped structure, consisting of an encoder path for fea-
ture extraction and a decoder path for feature localization. U-Nets
enable pixelwise classification by preserving spatial information
through skip connections that connect the encoder and decoder
layers. This makes them particularly effective for tasks like tumor
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segmentation, where precise delineation of structures is crucial.
U-Nets have demonstrated impressive performance [23].

Generative Adversarial Networks

GANs offer a unique approach to data generation. Consisting of
two networks, a generator and a discriminator, GANs work in tan-
dem to create highly realistic synthetic data. The generator learns
to produce images that resemble real data by deconvoluting a
noise pattern, while the discriminator assesses the authenticity
of these generated samples. Through adversarial training, GANs
can produce high-fidelity images that are virtually indistinguish-
able from real ones [24]. By learning the distribution of given ima-
ges, such a model enables the synthesis of new images from this
distribution. Conditional GANs (cGANs) allow the generation of
images using preset conditions, e. g. with desired disease foci or
contours of structures to be rendered. In medical imaging, GANs
are used for tasks like data augmentation to enhance the quality
and diversity of medical image datasets, super-resolution en-
hancement or denoising, and image-to-image translation, even
in cross-modality image synthesis. However, with synthetic ima-
ges of GANs, it is important to remember that a false disease state
may be represented.

Concepts to Apply DL to PET IR

DL has emerged as promising approach for enhancing PET IR. The
IR process can be interpreted as an image-to-image transforma-
tion, since a set of measured sinograms as input is used to infer
the underlying volumetric radioactivity distribution as target. The
learning process can be interpreted as finding a mapping between
the measured sinogram and the underlying ground truth of given
radioactivity distribution.

Direct DL Methods

Direct DL methods for PET IR bypass the need for models of the
imaging system and statistical noise, instead focusing on large-
scale training data to establish a full end-to-end mapping from
raw sinogram data directly to reconstructed images. While this
approach may avoid potential modeling errors, it neglects the ex-
pertise and progress gained from years of model-based recon-
struction development. Additionally, the exclusion of these mod-
els might lead to inexplicable mappings, potentially affecting
confidence, particularly for unforeseen inputs. However, notable
examples of direct DL methods include AUTOMAP [25], DeepPET
[26], Liu et al. (using cGANs) [27], and DirectPET [28], although
most applications have been limited to small 2-D slices.

Direct: Fully Connected Layers with CNNs

AUTOMAP utilizes fully connected layers to learn a mapping akin
to the inverse Radon transform, followed by a CNN for denoising.
Although primarily designed for MR image reconstruction, Auto-
MAP was also adapted for PET reconstruction [25]. However, PET
reconstruction results using single slice rebinned input sinograms
were less compelling, exhibiting lower visual quality than conven-
tional Poisson OSEM [29]. The approach in DirectPET [28] to use

volumes with 16 slices outperformed the vendor’s standard IRR
with respect to signal-to-noise ratio.

Direct: Convolutional Encoder–Decoder

DeepPET [26] applies the encoder-latent space-decoder architec-
ture for direct PET IR. The convolutional encoder-decoder (CED)
method employs convolutional downsampling to progress from
sinograms to a feature-rich latent space representation, which is
then upsampled in the decoder to yield the PET image. This elim-
inates the need for modeling assumptions by learning the imaging
physics and noise distribution, resulting in significantly acceler-
ated image reconstruction and increased adaptability to real
data. However, while simulations show promising results, real
data, especially brain data, still requires further refinement due
to the absence of high-quality reference data [14]. An adversarial
variant of this concept, proposed by Liu et al. [27], replaces CED
with a U-Net conditional generator and adds a discriminator net-
work, and an extended version with a discriminator was later sug-
gested by Hu et al. [30].

Ma et al. report the prototypic implementation of an enco-
der‑decoder network, based on the VGG19 network pre-trained
on the ImageNet database, for direct IR on sinograms of a long ax-
ial field of view PET [31]. They demonstrated the potential of DL to
learn complex IR principles such as projection, normalization, at-
tenuation correction, and scattering correction by training with
real clinical data. However, the prototype failed to accurately re-
construct PET scans of a physical phantom or in cases with ex-
treme anatomy [31].

DL Regularization Methods

Regularization is used to reduce or minimize noise in the context
of image processing or data analysis, often by adding a penalty
term to the model’s objective function, to find a simpler and
smoother solution that generalizes better and more robust to
new, unseen data. DL regularization methods mainly work in the
image domain. They use pre-existing models and potential func-
tions for regularization penalties. Unlike conventional model-
based techniques that used handcrafted priors (typically Gaussian
shaped priors motivated by the spatial resolution of the PET scan-
ner), these approaches integrate data-driven priors into image re-
construction, enhancing the regularization component of the
process while retaining standard imaging physics and statistics.
For practical implementation, so called ‘generators’ can be em-
ployed for some crucial steps within a conventional framework of
iterative reconstruction. To optimize the reconstruction objective
function, these generators may serve 1. for synthesis purposes, e.
g. as denoisers or conditional generators, or 2. for analysis purpo-
ses, e. g. by creating a sparse coded description of image features
which corresponds mathematically to a dimensional domain-
transformation with evaluation in so-called latent spaces.

Deep Learning for Image Generation: Synthesis
Regularization

In synthesis-based regularization, deep learning functions as an
image constraint, utilizing sophisticated deep mapping genera-
tors to create image estimates. This concept demands that image
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estimates align with the output of a deep network operating on
input code vectors. The elements of such an input code vector
may be the intensities within a predefined partitioning of the im-
age domain, e. g. within prefined regions-of-interest covering the
whole scan area. This approach offers flexibility in integrating ad-
vanced denoising techniques into PET image reconstruction, even
within fully 3 D contexts. Within this framework, three primary
approaches have emerged:
▪ Estimating an input code vector for a fixed deep network to

optimize the reconstruction objective function
▪ Using a variable input code while estimating network param-

eters for optimization
▪ Combined estimation of both network parameters and input

code vectors, either simultaneously or alternately.

To exemplify, Gong et al. [32] introduced a method that seamless-
ly integrates conventional IR techniques into the broader algorith-
mic framework of the alternating direction method of multipliers
(ADMM). Their work initially addresses a conventional MAP-EM
problem for image update, employing a quadratic penalty with a
prior image generated from a convolutional neural network (CNN)
operating on the current code vector estimate. An extended ap-
proach employs a fixed input vector, inspired by the "deep image
prior" (DIP) [33], where a deep CNN is trained to map the fixed
prior to match the current MAP-EM update, with a particular focus
on regions where CNN-based reconstruction had previously strug-
gled. Notably, this method is unsupervised, requiring no training
data, and has been compared to CNN penalty methods. Moreover,
the methodology has been extended to 4D IR and dynamic PET,
further demonstrating its versatility and potential for enhancing
parametric IR [34, 35] as well as for motion correction [36].

Deep Learning for Analysis Regularization

In the context of analysis-based regularization, deep networks are
seamlessly integrated into conventional prior or penalty func-
tions, constituting a fundamental element of IR through an analy-
sis regularization strategy [37]. Rather than imposing stringent
constraints as in synthesis strategies, such as image generation
or denoising, analysis priors aim for reconstructed images to align
with measured data (e. g., Poisson log likelihood) while adhering
to the proximity of a deep denoised image version. This nuanced
approach resembles the contrast between MAP-EM and KEM
methods [38], with analysis-based techniques offering a less re-
strictive framework.

Deep Learning for the Entire Prior: Unfolded Methods

The concept of physics-informed DL involves merging the
strength of AI with our existing comprehension of imaging physics
and statistical models, deploying AI specifically for the aspects of
reconstruction where confidence is lacking, such as the precise
regularization method and its strength. This strategy offers inter-
pretability, a critical aspect in clinical imaging, while replacing the
potential function with deep-learned mappings through the un-
folding of conventional IR steps [39, 40]. In this approach, DL cov-
ers the complete penalty or prior, eliminating the requirement for
explicit analytic, intuitive, or handcrafted components. The IR al-

gorithms are unrolled, transforming them into a cascade of
blocks, where each block represents an iterative update and can
be explicitly defined as a processing operator [40, 41]. These
blocks, combining trainable gradient-based components for the
penalty and fixed operator components for data consistency, es-
tablish a deep network that integrates partial or complete recon-
struction operators with deep denoising operators. A key feature
is the use of a deep-learned denoised prior image from the pre-
vious reconstruction estimate, creating a recurring loop [40, 41].

Three major unrolled methods emerged for PET IR with inte-
grated DL for regularization: BCD-Net [39], MAPEM-Net [40], and
FBSEM-Net [41]. BCD-Net’s training focuses on the block level, de-
noising updates to align with a high-quality reference [39]. In con-
trast, both MAPEM-Net and FBSEM-Net perform training based on
the final iteration, necessitating backpropagation through all
blocks during training for parameter updates [40, 41]. MAPEM-
Net conducts two MAP-EM updates per block, aligning the final
iteration with a high-quality reference [40]. For BCD-Net, training
is executed for individual block-dependent denoisers, matching
the iteration’s outcome with the high-quality reference, thus
avoiding backpropagation across all blocks [39]. In FBSEM-Net,
training ensures that the last iteration matches a high-quality re-
ference, leveraging a fixed image like MRI in an L2 norm penalty
for the MAP-EM update [41]. Notably, FBSEM demonstrates an
ability to mitigate PSF Gibbs artifacts.

Corda-D’Incan et al. present an innovative approach for joint
PET-MR IR [42], unrolling the MAP-EM algorithm for PET and the
Landweber algorithm for MR through a DL joint regularization
step. Their investigation of loss function selection demonstrates
that a network trained with a single-modality loss achieves super-
ior global reconstruction accuracy for PET and improved PET-
specific feature reconstruction, while joint reconstruction gains
for MR are primarily observed with highly undersampled data,
showcasing potential benefits of the proposed framework for
multimodal IR.

Deep Learning for Preprocessing and Post-
Processing

Preprocessing of raw sinograms is of interest for the correction of
detector failures. Whiteley et al. used an inpainting technique to
successfully correct for count loss due to the failure of detector
blocks [43].

Both low-dose PET data and images can be upgraded post-re-
construction to their high-dose counterparts via DL denoising ap-
proaches to enhance spatial resolution and mitigate noise [44, 45,
46, 47]. An alternative approach involves backprojected images,
where raw PET data (sinograms or list-mode data) are initially
backprojected into a 3D image array before undergoing recon-
struction to restore the quantitative radiotracer distribution [48].
Exploiting backprojected images, including time-of-flight infor-
mation for the so called histo-images, has shown promise for
deep-learned mappings [49].

Another important step of post-reconstruction processing is
attenuation and scatter correction. Shiri et al. demonstrated the
feasibility of direct attenuation and scatter correction of whole-
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body [18F]-FDG PET images using emission-only data via a deep re-
sidual network. The proposed approach achieved accurate at-
tenuation and scatter correction without the need for anatomical
images, such as CT and MRI [50].

Li et al. [51] addressed motion artifacts in PET imaging caused
by respiratory movements by an unsupervised non-rigid image re-
gistration framework based on DL. This hybrid methodology com-
bines deep NNs for image warping and deformation field refine-
ment with iterative IR for motion-compensated PET image
generation. The study demonstrates the potential of this hybrid
approach to enhance image quality, lesion contrast, and bound-
ary sharpness, while offering improved performance compared
to traditional iterative registration methods in the context of re-
spiratory-gated PET imaging.

AI-based super-resolution techniques [52] offer a powerful ap-
proach to enhance the spatial resolution of PET images, improving
image quality and enabling more accurate and detailed analysis.
By leveraging DL models trained on large datasets of images or
image patches [53], these techniques can recover fine details,
preserve quantitative accuracy, address noise-related challenges,
and impact various clinical applications, including small lesion de-
tection, anatomical localization, and quantitative analysis. The
integration of AI-based superresolution in PET imaging has the
potential to advance diagnostic capabilities and improve patient
care.

Challenges and Future Directions

The application of AI to PET IR holds immense promise, yet several
challenges must be navigated to ensure successful integration
into clinical practice.

Computational Efficiency and Real-Time Reconstruc-
tion

One of the foremost challenges lies in the computational de-
mands of DL algorithms utilized in PET IR. The efficiency of these
algorithms, both during training and inference, is crucial for clini-
cal feasibility. Real-time or near-real-time reconstruction is desir-
able for prompt clinical decision-making. This necessitates the de-
velopment of efficient algorithms and optimized implementation
strategies to accommodate clinical timelines [54].

Availability and Representation of Training Data

AI models heavily rely on large, diverse, and representative data-
sets for effective learning and generalization. Acquiring such data-
sets is resource-intensive and requires meticulous collation of PET
data from various sources, considering different scanners, acqui-
sition protocols, anatomical regions, and potential sources of
variability [16, 54].

Interpretability and Trust

The inherent complexity of DL models often leads to them being
treated as black boxes, making it challenging to decipher the reason-
ing behind their decisions. This lack of interpretability can hinder the

trust and acceptance of AI-driven reconstruction methods in clinical
settings, where explainability and transparency are vital [55].

Clinical Validation and Translation

A critical direction for the future is the clinical validation and
translation of AI-driven PET image reconstruction techniques. Rig-
orous studies and clinical trials across multiple centers are needed
to establish the clinical utility, generalizability, and impact of
these methods on diverse patient populations, imaging protocols,
and disease conditions [54].

Regulatory and Ethical Considerations

The integration of AI-based techniques into clinical practice brings
forth regulatory and ethical challenges. Regulatory frameworks
such as the Medical Device Regulation (MDR) in the European Uni-
on demand stringent validation, safety, and efficacy standards for
AI-based medical devices. Compliance with these regulations,
alongside ethical considerations including data privacy and patient
consent, is imperative when working with large datasets [56].

Pathways for Future Development

To navigate these challenges, a collaborative approach among re-
searchers, clinicians, and regulatory bodies is indispensable. Initia-
tives like data sharing, multi-center collaborations, transfer learn-
ing, standardized algorithms, and dedicated regulatory
frameworks can collectively address these obstacles and pave the
way for the seamless integration of AI-assisted PET image recon-
struction into routine imaging protocols [57].

In summary, while the journey toward integrating AI into PET
imaging workflows comes with significant challenges, the potential
for enhancing image quality, diagnostic accuracy, and patient care
is undeniable. By addressing these challenges collectively and ad-
vancing research, the future promises the harmonious merger of
AI-driven PET image reconstruction with routine clinical practice.
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