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ABSTRACT

Nuclear imaging techniques such as positron emission to-

mography (PET) and single photon emission computed to-

mography (SPECT) in combination with computed tomog-

raphy (CT) are established imaging modalities in clinical

practice, particularly for oncological problems. Due to a multi-

tude of manufacturers, different measurement protocols, lo-

cal demographic or clinical workflow variations as well as var-

ious available reconstruction and analysis software, very

heterogeneous datasets are generated. This review article ex-

amines the current state of interoperability and harmonisa-

tion of image data and related clinical data in the field of nu-

clear medicine. Various approaches and standards to improve

data compatibility and integration are discussed. These in-

clude, for example, structured clinical history, standardisation

of image acquisition and reconstruction as well as standard-

ised preparation of image data for evaluation. Approaches to

improve data acquisition, storage and analysis will be present-

ed. Furthermore, approaches are presented to prepare the

datasets in such a way that they become usable for projects

applying artificial intelligence (AI) (machine learning, deep

learning, etc.). This review article concludes with an outlook

on future developments and trends related to AI in nuclear

medicine, including a brief research of commercial solutions.

ZUSAMMENFASSUNG

Die Verwendung nuklearmedizinischer Bildgebungsverfahren

wie der Positronen-Emissions-Tomografie (PET) und der Sin-

gle-Photonen-Emissions-Computertomografie (SPECT) in

Kombination mit der Computertomografie (CT) hat sich in

der klinischen Praxis vor allem bei onkologischen Fragestel-

lungen etabliert. Aufgrund einer Vielzahl an Herstellern, mög-

licher Messprotokolle sowie verfügbarer Rekonstruktions- und

Auswertungssoftware werden dabei teils sehr heterogene Da-

tensätze generiert. Der vorliegende Übersichtsartikel unter-

sucht den aktuellen Stand der Interoperabilität und Harmo-

nisierung von Bilddaten und der damit verbundenen

klinischen Daten im Bereich der Nuklearmedizin. Es werden

verschiedene Ansätze und Standards zur Verbesserung der

Datenkompatibilität und -integration diskutiert. Dazu gehö-

ren beispielsweise die strukturierte klinische Anamnese, die
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Vereinheitlichung der Bildakquisition und -rekonstruktion so-

wie eine standardisierte Aufbereitung der Bilddaten für die

Auswertung. Es werden Lösungsansätze zur Verbesserung

der Datenerfassung, -speicherung und -analyse aufgezeigt.

Weiterhin werden Möglichkeiten vorgestellt, die Datensätze

so vorzubereiten, dass sie für Projekte, die künstliche Intelli-

genz (KI) anwenden (Machine Learning, Deep Learning etc.),

nutzbar werden. Der Übersichtsartikel schließt mit einem

Ausblick auf zukünftige Entwicklungen und Trends im Zusam-

menhang mit KI in der Nuklearmedizin, inkl. einer kurzen

Marktrecherche.

Introduction

Nuclear medicine imaging techniques, such as positron emission
tomography (PET) and single photon emission computed tomog-
raphy (SPECT), produce highly informative images that offer valu-
able insights into physiological and molecular processes in the hu-
man body. This complements the information obtained from
morphological imaging techniques such as computed tomog-
raphy (CT) or magnetic resonance imaging (MRI). Usually, either
CTor MRI images are additionally acquired for attenuation correc-
tion and anatomical correlation as part of PET/CT, SPECT/CT or
PET/MRI. Along with these imaging modalities, the integration of
clinical data plays a vital role in advancing scientific research [1].

However, nuclear medicine research and clinical applications
face a significant challenge: the heterogeneity of data across dif-
ferent imaging systems, acquisition protocols, institutions, and
research studies. In particular, there are instances where imaging
procedures have not been sufficiently harmonised, which can oc-
cur due to organisational reasons, differences in hardware and/or
software or to achieve better image quality within the scope of
personalised medicine (e. g., if a system has more advanced ima-
ging hardware or software in comparison to other sites to be har-
monised) [2].

By harmonising data and combining them from multiple sour-
ces (e. g. practices and clinics), researchers are able to produce
larger datasets that better represent a wide population and better
depict statistical variations [3]. This process has the potential to
uncover hidden patterns as well as relationships among features
associated with disease progression, treatment efficiency, and pa-
tient outcomes that might not be apparent when analysing indi-
vidual or single-institution datasets alone. This provides a deeper
understanding of the mechanisms and dynamics of the system
under investigation, which could lead to improved information-
based decision-making in healthcare workflows [4]. Utilising data
harmonisation, standardised workflows can be effectively imple-
mented across multiple research sites, enabling distributed analy-
ses, and fostering collaborations among clinicians. Moreover, it
holds significant clinical and patient benefits by enabling the reli-
able training and application of artificial intelligence models
across different centres, including smaller facilities, thus fostering
advancements in personalised healthcare.

This review aims to comprehensively summarise the current
state of interoperability and standardisation of nuclear medicine
image data and associated clinical data to give an overview of im-
provements that might lead to even better data quality for ma-
chine learning (▶ Fig. 1). The focus of this work is on the entire
data processing pathway, from the initial collection of medical his-

tory, through the acquisition of image data, to multi-centre eval-
uation using machine learning methods.

In this review, we define interoperability as the ability of differ-
ent systems, tools, or datasets to work together seamlessly, en-
abling the exchange and utilisation of information without signif-
icant barriers. Standardisation refers to the establishment of
uniform examination protocols and methods for data collection,
measurement, and analysis within a single study or across multi-
ple studies to minimise variability and enhance reliability of re-
sults. Harmonisation/normalisation is the process of reconciling
and adjusting data from different sources to ensure compatibility
and comparability.

The subsequent sections of this paper will describe key aspects
such as data formats and standards, integration of clinical data
with nuclear medicine images, data harmonisation and normalisa-
tion techniques, interoperability frameworks, and emerging tech-
nologies that hold promise in overcoming existing barriers.

The individual aspects of this review article are shown in
▶ Fig. 1. At the beginning, section 2 of this article (▶ Fig. 1A)
deals with the collection and processing of clinical data. Section 3
(▶ Fig. 1B) then focuses is on image data acquisition and proces-
sing. Section 4 goes deeper into harmonisation of image data and
associated clinical data and their preparation for different ma-
chine learning options (▶ Fig. 1C). Section 5 presents different
use cases and software tools (▶ Fig. 1C and 1D). Section 6 gives
a brief overview of the current state of harmonisation in routine
clinical practice (▶ Fig. 1E), including a market review.

Data acquisition and organisation

To standardise and harmonise patient data for matters of patient
care or clinical research, a standardised collection of patient data
that is consistent for each hospital and department is necessary
(▶ Fig. 1A). Therefore, it is crucial to use standardised forms or
documents to help clinical personnel to obtain the same type of
information for each patient. Information collected from the pa-
tient’s medical history, including procedures and imaging studies
[5], have been shown to be of great added value. These roughly
structured documents contain information for patients, such as
the need for and the performance of the procedure, alternatives
to the preferred strategy, as well as risks and possible complica-
tions of the approach. The medical staff also gather information
about the patients and their conditions.

To enable the use of this information in clinical research, a sto-
rage system is needed that stores the information in a standard-
ised and structured way and makes it available for later use in a
format that can be used for analysis (statistics, machine learning
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algorithms, deep learning, etc.). For this purpose, electronic case
report forms (eCRFs) are a valuable resource [5]. The eCRF forms
are built into electronic data capture (EDC) systems that allow re-
searchers to design individual forms for each study. Researchers
and clinical staff can use them to manually enter data into the sys-
tem. These systems not only offer an effective way to collect data
for clinical and research purposes, but also facilitate collaborative
data sharing among different research sites and hospitals. Advan-
tages include early detection of protocol violations, reducing un-
necessary work, and improving the data quality of clinical trials.
These types of data can be integrated into electronic health re-
cords very easily. Also, installation, maintenance, and support of
such software applications are difficult to provide and often lack
funding. There are also concerns about initial installation costs
and patient privacy. As the data usually have to be transferred
manually, this creates additional workload for the staff. Therefore,
to reduce the time-consuming and labour-intensive activity of
manually copying the data from the paper forms into eCRFs, an

automated extraction from the primary clinical systems would be
helpful [6]. This could lead to a reduction of transfer errors and
workload and increase data quality and security.

The reuse of electronic health record (EHR) data, as obtained
from eCRFs, is not only desirable for medical staff but also for the
patients, as it could prevent duplication of patient examinations
and thus reduce time and study costs. Studies have also shown
that the automatic transfer of data from EHRs [7] into eCRFs can
reduce data latency, transcription errors, missing data, the num-
ber of necessary database queries as well as staff time and effort
[8, 9].

However, the exchange of medical data remains limited due to
a lack of interoperability of data between healthcare providers.
This may be due to outdated infrastructure or inconsistent data
formats. Employing a harmonised data format would facilitate
the exchange of medical data and enable both nationwide and in-
ternational collaborations. Data interoperability requires EHR data
to be structured in a common format and standardised terminol-

▶ Fig. 1 Overview of the process of data collection, processing, and evaluation for medical research with nuclear medicine image data and asso-
ciated clinical data. This is subdivided into the collection and preparation of clinical data (Figure 1A) as well as image data (Figure 1B), data linkage
and analysis (Figure 1C), the development of applications (Figure 1D) and their use in clinical routine (Figure 1E).
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ogies. To this end, the Health Level 7 Fast Healthcare Interoper-
ability Resources (FHIR) model was adopted [10, 11]. FHIR is an
international standard that integrates diverse datasets into well-
defined interchangeable segments of information called FHIR re-
sources. This format facilitates interoperability and enables the
harmonisation of data, which allows standardised data proces-
sing. Also, the rollout of artificial intelligence (AI) applications is
possible across clinics and hospitals regardless of which informa-
tion system is used there. Making such clinical data from the pri-
mary clinical information systems available to medical research in
a standardised and harmonised way is the main goal of the
German Medical Informatics Initiative (Medizininformatik-Initia-
tive) [12].

In conclusion, standardisation and harmonisation of patient
data are crucial for effective clinical research. The use of standard-
ised forms and electronic data capture systems streamlines data
collection and promotes consistency across hospitals and depart-
ments. Despite the advantages, challenges such as incomplete or
incorrect data and difficulties with maintenance have been identi-
fied. Automated data extraction from primary clinical systems
holds promise in reducing errors and workload. The adoption of
Health Level 7 FHIR models supports data exchange and standard-
ised processing, and promotes collaboration. This clinical data,
along with the image data, the harmonisation and standardisation
of which will be discussed in the next section, can then be used for
collaborative research.

Prospective harmonisation of image-derived
parameters

In addition to the organisation and availability of the data, the
content of the stored data is of course also a decisive factor for
multiparametric or multicentre evaluations in medical research.
Here, imaging data often form the basis or at least an important
part. A thorough calibration of the imaging systems forms the ba-
sis for any multi-centre analysis. The basic requirement is that the
imaging system has been commissioned and that a regular quality
control (QC) protocol is in place to ensure that the system reliably
provides qualitative clinical images (i. e., the distribution of counts
in the subject). Once these conditions are met, an ideal prospec-
tive harmonisation of image-based parameters requires careful
calibration (i. e., conversion of counts to activity) and a certain lev-
el of standardisation of the resolution between systems or sites.
These two aspects will be described in this chapter (▶ Fig. 1B).

Calibration of imaging systems

In nuclear medicine imaging such as PET/CT or SPECT/CT, tomo-
graphic reconstructions yield the number of counts measured by
the detectors, typically corrected for the reduction in count rate
caused by photon attenuation or scatter effects. In quantitative
imaging, this count rate is typically converted to activity or activ-
ity concentration using an image-based calibration factor.

For SPECT/CT, this calibration factor is usually determined by
scanning a phantom filled with a known activity. Ideally, the radio-
nuclide calibrator used to measure the activity injected into the

phantom should be traceable to a primary standard of activity,
providing harmonisation of activity measurements and thus the
image-derived activity concentration across sites [13, 14, 15].

In PET/CT, the activity concentration is typically converted to
the standardised uptake value (SUV), a semiquantitative measure
of uptake in tissue. It is calculated as the ratio of the image-
derived activity concentration (based on the calibrated imaging
system) and the whole-body activity concentration of the injected
radiopharmaceutical (the radionuclide calibrator-based activity
administered to the patient divided by the patient weight). Most
PET/CT systems are calibrated by cross-calibration with a trace-
able 68Ge/68Ga source. For large phantoms (i. e., when minimising
the partial volume effect [16]) this can lead to very accurate im-
age-derived activities with a relative standard uncertainty of
down to 1 % [17]. To avoid systematic errors in SUVs between
sites, care should be taken that a traceable radionuclide calibrator
is used to measure the activity administered to the patient. The
same applies to the weight of the patient, which should be auto-
matically determined by a calibrated balance instead of, as is com-
mon practice, asking the patient, as this can also lead to substan-
tial errors in SUV [18]. Finally, it should be ensured that the
injected radioactivity as well as the times of activity measurement
(administration of the therapeutic activity as well as start of ima-
ging) are entered correctly in order to avoid unnecessary errors in
SUV.

Harmonisation of the image resolution

In addition to image calibration, which typically refers to the
cross-calibration between the radionuclide calibrator and the ima-
ging system, the harmonisation of image resolution and thus
quantitative parameters that are spatially confined to smaller
areas also plays a major role. This includes, for example, param-
eters derived from the SUV in spatially delineated volumes of in-
terest such as SUVmax (voxel with the highest SUV), SUVpeak
(mean SUV in a subregion around SUVmax), or SUVmean (mean
SUV in the entire volume of interest). Adequate comparability be-
tween SUV-derived parameters can be achieved by harmonising
patient preparation as well as acquisition and reconstruction
parameters, as recommended, e. g., by the European Association
of Nuclear Medicine Research Ltd (EARL) accreditation program
for [¹⁸F]fluorodeoxyglucose-PET/CT tumour imaging, which was
launched in 2010, and updated in 2019 [19]. By setting limits of
acceptability for recovery coefficients (SUV) of participating sys-
tems, the program has since helped to successfully harmonise
the spatial SUV parameters of more than 200 PET/CT systems at
more than 150 sites, located mostly in Europe [20, 21]. In the con-
text of multicentre studies, which are likely to become increasing-
ly important in the future, it is strongly advised that participation
in such harmonisation programmes is given serious consideration.

Overall, the success of multi-centric research with image data
heavily relies on the harmonisation of image parameters. To
achieve accurate and standardised measurements across different
imaging systems, standardised calibration procedures and effec-
tive quality control are required. The calibration of imaging sys-
tems through traceable radionuclide calibrators and cross-calibra-
tion methods ensures consistency in activity measurements.
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Additionally, harmonising image resolution by aligning patient
preparation, acquisition, and reconstruction parameters signifi-
cantly enhances comparability. How these image data can be fur-
ther harmonised and processed for use in machine learning mod-
els is described in the next section.

Data preparation and harmonisation for multi-
centre applications

The validity of Radiomics- and deep learning-based models relies
on the reproducibility of image data including test-retest reliabil-
ity [22, 23, 24] and comparability of image acquisition and recon-
struction across different imaging systems and protocols [25, 26,
27, 28]. While variability in post-processing (e. g., volume seg-
mentation, feature extraction, etc.) can be avoided by standardi-
sation of procedures, variability in raw image data needs to be
corrected (e. g., by retrospectively filtering the data to achieve a
similar resolution across systems) [29, 30, 31, 32, 33].

To enable the multi-centric application of machine learning
models (▶ Fig. 1C), one of the following approaches should be
considered:
1. Aligning input data using harmonisation methods. These

methods encompass not only prospective standardisation of
image generation and processing techniques but also strate-
gies for retrospectively assimilating image data.

2. Employing transfer learning. This involves leveraging knowl-
edge gained from pre-trained models using data from one
centre to improve performance when dealing with data from
another centre.

3. Including information on machine/vendor/centre as additional
model input. This is done by incorporating categorical features
indicating the source of data in the machine learning model.

While harmonisation of input data must be performed before the
training of clinical models, multi-centric information is considered
in approaches (2) and (3) during the training of clinical models.
For transfer learning, no central pooling of patient data is requir-
ed. To enable a straightforward application of machine learning
models to new centres without central pooling of patient data
for methods (1) and (3), federated learning is highly relevant. Fed-
erated learning allows training of a model in several independent
runs at each centre without the need for central data pooling.
Considering that the most promising harmonisation methods
themselves require training on patient data from different cen-
tres, this could be solved in the future either also by federated
learning approaches or centralised processing of benchmark data
generated using 3D-printed radioactive phantoms [34, 35, 36] in
combination with PET data simulations adapted for each individ-
ual scanning device. While the concept of federated learning is
methodologically sound – especially in light of the aforemen-
tioned harmonisation approaches -, a major bottleneck may pre-
vent its widescale adoption: local patient demographics and the
way patients approach or voluntarily delay contacting their
healthcare providers, have profound implications for when and
at which stage of the disease patients enter the loop of the re-
spective clinical screening processes. In addition, local variations

in how those patients are treated have a major impact on the clin-
ical outcome, and therefore, also on the clinical endpoint any mul-
ti-centric AI approach takes as input. In this regard, the incorpora-
tion of all locality-specific metadata (i. e., demographics,
healthcare availability, clinical screening and treatment decision
processes, etc.) in the AI analysis is a potential way to further en-
hance data quality and hence the ability to leverage multi-centric
AI approaches such as federated learning. Extensive reviews on
harmonisation strategies have been published [37, 38, 39]. These
methods can be applied directly in the image domain or, for radio-
mics applications, also after feature extraction in the feature do-
main.

Retrospective harmonisation of image data

As described in the previous section, a simple strategy to harmo-
nise image properties is the standardisation of image acquisition
and reconstruction protocols before data collection [40]. Al-
though proactive harmonisation reduces information loss and
should therefore always be performed, if possible, a study using
3 D printed phantoms scanned on different devices has shown
that even this approach could not eliminate all differences in
radiomic features [33]. In the context of multi-centre studies,
there is also the difficulty that the data are [mostly] collected
and analysed retrospectively, but the raw data have already been
deleted and thus harmonisation can no longer take place in this
data processing step. In contrast, standardisation of image post-
processing can always be performed. In the image domain, this
comprises the interpolation of images to a specific voxel size and
the standardisation of quantification procedures such as image
normalisation or voxel-wise extraction of tracer kinetics. For ex-
ample, it has been shown that even the choice of interpolation al-
gorithm can affect feature comparability [41]. Moreover, filtering
techniques can be applied to equalise image resolution and noise
characteristics. This, however, results in a reduction of available
image information. For example, texture properties can be
smoothed out when wide filters (i. e., with large full width at half
maximum) are required for sufficient image harmonisation [42].

Another recent approach is deep learning-based image harmo-
nisation [43, 44, 45, 46, 47, 48]. These methods aim to generate
harmonised images using deep networks such as convolutional
neural networks (CNNs) or generative adversarial networks
(GANs). Choe et al. [44] found a reduced effect of different CT im-
age reconstruction kernels when applying CNN-based image con-
version. Hognon et al. [43] first artificially generated a paired MRI
dataset by applying unpaired image-to-image translation (Cycle-
GAN [49]) to transform a multicentric MRI dataset into a standard
domain. In a second step, they used these paired data to train a
second network for paired image-to-image translation (pix2pix
[50]). The second network then allowed to reduce the variability
between domains while preserving the within-domain variability.
Another group by Modanwal et al. [45] tackled the task of preser-
ving the structure while harmonising MRI image properties (in-
tensity and noise distribution) by introducing a CycleGAN that
uses small patches of the input image. Zhong et al. [46] success-
fully employed a dual GAN approach to harmonise features de-
rived from diffusion tensor images. Another architecture called
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StarGAN v2 consisting of a style encoder, content encoder, gen-
erator, and discriminator was evaluated by Bashyam et al. [48]
for the harmonisation of MRI images to improve cross-site gener-
alisability of deep learning age prediction. Very recently, diffusion
models have gained increasing interest in various tasks including
image-to-image translation [51]. For example, it has already been
applied for translation between multiple modalities [52, 53].

Retrospective harmonisation of image-derived
features

When radiomics are used for medical predictions, harmonisation
can also be applied to the feature extraction process or the extrac-
ted features themselves. This includes the discretisation of inten-
sity values (fixed bin width or the number of bins) [33, 54] and the
application of standardised feature extraction methods as defined
by the imaging biomarker standardisation initiative (IBSI) [55]. In
case of volume-based radiomics, the choice of a standard proce-
dure for tumour segmentation is essential [29, 56, 57]. When new
radiomic features are established, availability of the methods and
algorithms is required for final standardisation, which ideally is
guaranteed through open access code or free software. Such
methods comprise, e. g., dynamic radiomics [58], delta radiomics
[59, 60], multi-modal radiomics [61], the application of voxel-wise
texture information [62, 63, 64], or so-called deep features [65].

One approach to ensure the reliability of radiomic features is to
select features for which statistical measures demonstrate high
test-retest reliability and robustness between different machines,
vendors, and centres, or to even design new features for specific
purposes. However, this can result in the exclusion of clinically rel-
evant features and thus unnecessarily reduce the clinical perform-
ance of models [66].

The ComBat harmonisation method has proven to be highly ef-
fective in removing the batch effects, i. e., variations in feature
distributions obtained for different centres. This is achieved by es-
timating the shift and spread of feature value distributions [67,
68, 69, 70, 71]. One advantage compared to a simple z-score nor-
malisation is that ComBat allows to consider variable frequencies
of certain patient groups at different centres using a subcategory
covariate [70]. Some variants of ComBat have been proposed [68,
72], the performance of which is yet to be validated by indepen-
dent groups.

Statistical measures of similarity

Various statistical measures have been applied to evaluate and
compare the different image and feature harmonisation tech-
niques. For example, ComBat has been shown to successfully im-
prove feature similarity according to Friedman/Wilcoxon testing
for paired data [67, 73] and ANOVA for unpaired data [68]. How-
ever, ComBat was not able to remove changes in the ranking of
patients according to feature values arising, e. g., from different
reconstruction settings. In other words, the correlation of fea-
tures obtained for different settings could not be improved. It re-
mains to be investigated if, for example, deep learning-based im-
age harmonisation can be used to correct for both the batch
effects and patient ranks simultaneously. Further frequently em-
ployed statistical measures for evaluating the robustness of radio-

mic features include the coefficient of variation (CV) and the intra-
class correlation coefficient (ICC) [41, 74, 75]. This huge variety of
statistical measures and their implications shows how important
the correct choice of statistical metrics is for the assessment and
optimisation of harmonisation techniques [33, 71]. Additionally, it
is essential to conduct the final benchmarking of harmonisation
strategies by evaluating their performance enhancement
on specific clinical tasks using real patient data [68, 76, 77, 78,
79, 80].

In summary, ensuring the reliability and comparability of im-
age data is paramount for the effectiveness of radiomics and ma-
chine learning in multi-centre applications. Approaches like data
harmonisation, transfer learning, and integration of centre-specif-
ic information aim to enable robust model performance across
different centres. Retrospective harmonisation methods, both in
the image domain and in the feature domain, hold promise for
aligning input data. While various statistical measures are used
to evaluate these techniques, comprehensive benchmarking in
clinical tasks using actual patient data is essential to validate their
effectiveness. The challenge of harmonising data in the context of
complex patient demographics and treatment processes requires
the integration of site-specific metadata that could drive multi-
centre AI. The corresponding projects and software tools are pres-
ented in the following chapter.

Analysis projects with harmonised data

In the field of medical data science, data harmonisation facilitates
the development of visualisations that provide an intuitive and
comprehensive representation of complex interacting systems
from multiple sources and sites.

When analysing multi-centric data (▶ Fig. 1D), a distinction
can be made between a centralised collection of the data with
subsequent analysis or a federated analysis, with the latter invol-
ving higher technical hurdles. In centralised analysis, on the other
hand, there may be limitations due to data protection. Here, expli-
cit consent may be required, but there are also initiatives, such as
the German Medical Informatics Initiative, which promotes a
large-scale collection of broad consent [81].

As an example, the Molecular Tumor Board Platform (Cancer
Core Europe) started setting up a promising harmonised infra-
structure in Europe for the exchange and use of next-generation
sequencing data, automating the interpretation of results, pro-
moting consistent decision-making, and enabling precision oncol-
ogy [82]. Regarding distributed analysis, the ongoing project RA-
COON (Radiological Cooperative Network) in Germany
established a nationwide infrastructure for structured reporting
of COVID-19 related radiological data [4]. The harmonised data
in this project enabled decentralised as well as centralised data
analysis, resulting in various novel research findings [83, 84] and
facilitating the development of powerful tools such as imaging-
based severity predictors. Such tools, which rely on harmonised
data (e. g., structured diagnosis), have proven crucial to improve
data accessibility and interpretability and addressing the challen-
ges and opportunities presented by the exponential growth of
healthcare data today [4, 82, 85].
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The availability of standardised clinical data also enables the
utilisation of artificial intelligence models for clinical decision sup-
port. Machine learning and deep learning techniques play an in-
creasingly important role in modern medicine. In the field of med-
ical image analysis, standardised workflows based on deep
learning, such as nnU-Net [86] and AUCMEDI [87], are becoming
increasingly popular in radiomics as they provide automated arti-
ficial intelligence solutions to improve disease diagnosis, risk stra-
tification, and – potentially – treatment recommendations. Stand-
ardised and harmonised clinical data not only facilitate the
development of robust and strong predictors, but also enable
the use and application of models across multiple sites [10].

Applications of artificial intelligence in routine
clinical care

The procedures described in the previous sections for standardi-
sation and harmonisation of image data and associated clinical
data, and the subsequent training of machine learning models, re-
sult in useful tools that need to be transferred from research to
routine clinical practice. AI has the potential to revolutionise the
interpretation and analysis of medical images, leading to better
accuracy, efficiency, and patient care (▶ Fig. 1E) [88, 89]. These
imaging and radiomics data could, for example, support clinicians
in the diagnosis of cancer [90]. However, any software designed
to diagnose, prevent, monitor, predict, or treat a disease is consid-
ered a medical device and must be approved as such [91]. This ap-
proval process requires a high level of accountability for the soft-
ware to minimise the risks of false results, which can be achieved
through extensive risk mitigation. One potential way to mitigate
usability-related risks is investing efforts into explainable AI [92]
and the widescale utilisation of domain experts in both the devel-
opment as well as the independent validation phases of medical
devices [93]. Uncertainty analysis can help to provide insights
into the reliability of predictions and foster trust in the technolo-
gy's outcomes [94]. Various AI-driven medical devices have been
recently approved that can be used in routine clinical care [95].
These software products are typically classified as class 2 medical
devices by the United States Food and Drug Administration (FDA).
The product groups with a focus on cancer-suspected lesions or
image optimisation are listed in ▶ Table 1. Since the legal situa-

tion in Europe regarding the use of AI in medical devices is not
yet as advanced as in the United States, market research is diffi-
cult, but it can be assumed that AI-based evaluation tools that
are approved by the FDA will eventually also be approved for the
European market. In this regard, endeavours to approve medical
devices by European notified bodies have increasingly become a
challenge for two main reasons. On the one hand, the number of
approval requests has been sharply increasing, which has preven-
ted notified bodies from reacting adequately. As a result, the ever-
increasing backlog of European notified bodies may leave any
medical device manufacturer with a straight refusal due to time
constraints. On the other hand, the applicable laws within Europe
are becoming more and more tightened, while the FDA is making
significant efforts to continuously update and properly guide and
ease certain approval processes within the USA [96].

A large proportion of approved products are used in radiology
with a focus on oncology [97]. However, for artificial intelligence,
appropriate training and validation data are needed, which can be
provided through the harmonisation and interoperability meth-
ods presented here. With the support of software tools in diagno-
sis and therapy, a minimum standard independent of the physi-
cian’s experience or other local factors that influence the quality
of medical care can be achieved and thus health equity can be ap-
proached [98]. Regarding the occurrence of different medical
software categories, a clear trend is visible towards detecting
and characterising suspicious lesions, as well as supporting radio-
therapy planning, while AI-driven image acquisition approaches
are to date underrepresented, giving an obvious priority to AI-dri-
ven clinical decision support.

Conclusion

By establishing standardised protocols, formats, and data struc-
tures, harmonisation enables research between different devices,
institutions, and research facilities. This promotes collaboration,
facilitates data sharing, and supports the development of ad-
vanced analytical techniques, leading to improved patient care,
better research outcomes, and overall advancement in nuclear
medicine. Harmonisation also improves the accuracy, consisten-
cy, and reliability of data, enabling more effective diagnosis, treat-
ment planning, and patient monitoring. Therefore, investing in in-
itiatives and technologies that promote the harmonisation of

▶ Table 1 FDA-registered medical devices with a focus on cancer-suspected lesions or image optimisation (as of July 2023).

FDA CFR Title
21 Section

FDA Product
Code

Name Number of
registrations

892.2050 QKB Radiological image processing software for radiation therapy 15

892.2060 POK Radiological computer-assisted diagnostic software for lesions suspicious of cancer. 5

892.2080 QFM Radiological Computer-assisted Prioritisation Software For Lesions 15

892.2090 QDQ Radiological Computer Assisted Detection/diagnosis Software for Lesions Suspicious
for Cancer

15

892.2100 QJU Image Acquisition And/or Optimisation Guided By Artificial Intelligence 2
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nuclear medicine image data and associated clinical data is para-
mount to driving innovation to realise the full potential of nuclear
medicine in modern healthcare. In addition to the above endea-
vours, properly handling significant local demographics-based
variations across different centres that attempt to harmonise
their data for multi-centric evaluations remains a major challenge.
Beyond technological or local demographic variations, the reac-
tion time gap between FDA and European notified bodies is a ma-
jor disadvantage for European medical device manufacturers and
patients warranting a fundamental overhaul of European medical
regulatory processes for the benefit of patients.
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