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ABSTRACT

Tracer kinetic modelling based on dynamic PET is an impor-

tant field of Nuclear Medicine for quantitative functional

imaging. Yet, its implementation in clinical routine has been

constrained by its complexity and computational costs. Ma-

chine learning poses an opportunity to improve modelling

processes in terms of arterial input function prediction, the

prediction of kinetic modelling parameters and model selec-

tion in both clinical and preclinical studies while reducing pro-

cessing time. Moreover, it can help improving kinetic model-

ling data used in downstream tasks such as tumor detection.

In this review, we introduce the basics of tracer kinetic model-

ling and present a literature review of original works and con-

ference papers using machine learning methods in this field.

ZUSAMMENFASSUNG

Die Modellierung der Kinetik von Tracern auf der Grundlage

der dynamischen PET ist ein wichtiger Bereich der quantitati-

ven funktionellen Bildgebung in der Nuklearmedizin. Ihre

Umsetzung in der klinischen Routine wird jedoch durch ihre

Komplexität und ihre Rechenkosten eingeschränkt. Das

maschinelle Lernen bietet die Möglichkeit, die Modellierungs-

prozesse im Hinblick auf die Vorhersage der arteriellen

Eingangsfunktion, die Berechnung der kinetischen Modellie-

rungsparameter und die Modellauswahl sowohl in klinischen

als auch in präklinischen Studien zu verbessern und gleichzei-

tig die Verarbeitungszeit zu verkürzen. Darüber hinaus kann

sie dazu beitragen, den Nutzen von kinetischen Modellie-

rungsdaten bei nachgelagerten Aufgaben, wie z. B. der

Tumorerkennung, zu verbessern. In dieser Übersicht stellen

wir die Grundlagen der kinetischen Modellierung von Tracern

vor und präsentieren eine Literaturübersicht über Originalar-

beiten und Konferenzbeiträge, die Methoden des maschinel-

len Lernens in diesem Bereich verwenden.

Review
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Introduction

In dynamic PET studies, mathematical models are commonly used
to describe the relationship between the measured temporal data
and the kinetic physiological parameters that determine the
uptake of a radiotracer and its clearance. The class of models
most commonly used in this context are compartmental models
that are described by ordinary differential equations. Standard es-
timation procedures such as nonlinear least squares estimation
can be used to estimate the model parameters from the meas-
ured data [1]. Depending on the properties and errors of the
measured data, model-based methods can be developed that are
generally simpler than full parameter models but use additional
assumptions about physiological parameters [2, 3].

Machine learning is used at various points in data processing,
which is relevant for kinetic modelling of tracers. It addresses
data correction (e. g., motion correction, attenuation correction,
and scatter correction), image reconstruction (e. g., improvement
of image resolution and noise behaviour) and image analysis
(e. g., tissue segmentation). The improvement of image proper-
ties and more precise definition of volumes-of-interest influences
the precision of the kinetic parameters. However, machine learn-
ing methods are also used directly in modelling, namely for esti-
mating kinetic parameters and for model selection. The machine
learning algorithms used for kinetic modelling applications are lar-
gely based on convolutional or recursive neural network architec-
tures. However, algorithms such as generative adversarial net-
works and their variations are also used in medical image
analysis, e. g., in reconstructions, and thus have an influence on
the quality of the kinetic outcome parameters. An overview of
the commonly used algorithms is given in Hellwig et al. within
this issue. The majority of applications in literature relate to clini-
cal rather than to preclinical applications.

The aim of this article is first to review the basics of tracer ki-
netic modelling and then to present papers that address arterial
input function prediction, the prediction of kinetic modelling
parameters and model selection in both clinical and preclinical
studies using machine learning. Furthermore, we elucidate the
impact of machine learning methods on auxiliary and down-
stream tasks related to kinetic modelling.

The literature search was carried out via PubMed (U.S. National
Institutes of Health's National Library of Medicine (NIH/NLM)) on
July 10th, 2023. Our search strategy included the following key-
words: (PET OR “positron emission tomography”) AND (“kinetic
modelling” OR “kinetic modeling” OR “tracer kinetic modelling”
OR “tracer kinetic modeling” OR “parametric image”) AND (“arti-
ficial intelligence” OR “machine learning” OR “deep learning”). In
total 20 matching publications were found in PubMed. Additional-
ly, the authors included eleven research papers not found in the
PubMed search that matched the same criteria in Google Scholar.

Out of the 20 PubMed matches, five were discarded as they did
not include machine learning approaches and two as they were
review articles, not original works. All other 13 PubMed matches,
as well as the additional eleven papers selected from the Google
Scholar search, are discussed below.

Basics of tracer kinetic modelling in PET

In the following, we present the concepts and assumptions com-
monly used for tracer kinetic modelling (also known as physiologi-
cally-based pharmacokinetic (PBPK) modelling) in dynamic PET.

Compartmental models

For applications in PET, compartment models are usually used to
describe the uptake, metabolism and clearance of radiotracers in
tissue (▶ Fig. 1) or cells [4]. A compartment describes a possible
physical and/or chemical state of the radiotracer, often combining
and describing several possible states in a single compartment.
Here, blood is not counted as a compartment. Compartment
models also describe the rate of change at which a radiotracer
transitions from one state to another. The meaning of the rate
constants depends on the interpretation of the source and target
compartments. All modelling approaches aim to estimate one or
more rate constants (or a ratio of them) from measurements of
the radioactivity concentration in tissue and blood. A detailed
and comprehensive description, also of the following aspects,
can be found in [5].

▶ Fig. 1 Examples of compartmental model configurations. Ca:
tracer concentration in arterial blood; C1, C2, C3: tracer concentra-
tions in compartments 1–3; K1, k2, kn: rate constants describing the
movement between compartments 1–3. A One tissue compart-
ment model for e. g., a blood flow tracer; B Two tissue compart-
ment model for e. g., [18F]FDG; C Three tissue compartment model
for a receptor-binding ligand.
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a) Model implementation

Kinetic modelling of tracers requires measurements of the radio-
activity concentration in tissue and in arterial plasma over time.
The radioactivity concentration in tissue is determined by posi-
tron emission tomography and the time course of the radioactiv-
ity, i. e., the time-activity curve, is given by definition of volumes-
of-interest on reconstructed PET images or on a voxel-by-voxel
level (▶ Fig. 2). The radioactivity concentration in arterial blood is
usually obtained from a radial artery, manually or with an online
detection system for continuous sampling. From these blood
samples, the concentration of radiotracer in plasma and whole
blood and the proportion of metabolites are assessed. However,
the experimental determination of an arterial plasma input func-
tion has some disadvantages as it is invasive and labour intensive

and with regard to tracer kinetic modelling, errors in the meas-
ured input function can lead to increased uncertainty in the esti-
mated parameters of the assumed model. Also, for organs like the
lungs or the liver, where blood flow is not purely arterial, other in-
put functions such as portal vein have to be considered. For these
reasons, a number of alternatives have been proposed, such as
the determination of image-derived input functions, population-
based input functions or approaches that estimate the input func-
tion and kinetic parameters simultaneously. A detailed description
of the limitations of these approaches is given in [6]. If the ligand
forms a significant proportion of metabolites, the arterial plasma
input function must be corrected. For this purpose, a mono- or bi-
exponential function is fitted to the proportion of the intact tracer
and multiplied by the total plasma curve.

▶ Fig. 2 A Example for dynamic PET data for a large field-of-view PET scanner. The example shows [18F]FDG coronal maximum intensity projections
of several PET frames over time. B Segmentation mask for several organs overlaid over the integrated PET image for the same patient. C Organ-
based time-activity curves per organ obtained averaging the activity concentration of all frames of A over the respective segmentation masks of B.
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The description of compartment models is done by ordinary
differential equations (ODEs), the derivation of which is described
in detail in [5]. The individual parameters of such models are com-
monly called micro-parameters (▶ Fig. 1, 3). ▶ Fig. 1A shows a
one-tissue compartment model used to represent tracers show-
ing reversible tissue uptake. In such case, the rate of change of
the tissue concentration in compartment C1, the following
applies:

▶ Fig. 1B shows a model with two tissue compartments used
to describe a tracer that is either metabolized and trapped in the
tissue (represented by compartment 2) or returns to the blood
(represented by compartment 1). Then, the rate of change of
the tissue concentrations in compartments C1 and C2 is:

The solutions of the differential equations can be found in [5].
It can be assumed that the measured tissue activity will be the
sum in both compartments, so that the model prediction is C1(t)
+ C2(t). In order to model the fact that radioactivity is also present
freely in the blood, a further micro-parameter is commonly used,
namely the blood volume, VB, describing the percentage of blood
in a given voxel, region of interest or organ.

That is, given knowledge of the input function, the model con-
figuration and its rate constants, the tissue concentration can be
mathematically predicted at any time point. However, in an ex-
perimental setup with PET, the opposite mathematical problem
arises: given measurements of radioactivity in the tissue, the in-
put function and a proposed model configuration, the goal is to
estimate the underlying rate constants. Various methods are
available for parameter estimation, depending on the model and
the sample size and statistical quality of the data. Nonlinear least
squares estimation is a commonly used method for parameter es-
timation in the context of compartmental models, which are,
however, prone to noise and require high computational effort.
To determine which model configuration best describes the meas-
urement data, statistical tests such as the F-test [7, 8], the Akaike
information criterion [9] or the Schwarz criterion [10] are com-
monly used. In addition, the standard errors of the fitted param-
eters as well as their correlation provide information about their
uncertainty. Also the patterns of the residual sums of squares of
the model fit, which is expected to be randomly distributed
around zero, show the goodness-of-fit.

For reversible tracers, the ratio of estimated rate constants
equals selected distribution volumes. VT, which is considered
here, is defined as the ratio of the concentration of tracer in a
region of tissue to that in blood plasma at equilibrium [3, 11].
For irreversible tracers, such as [18F]FDG, the net uptake of the
tracer into tissue is assessed [2].

b) Model-based methods

In addition to compartmental models, there are model-based
methods that are generally simpler than full parameter models
and that use additional assumptions on physiological parameters.
Nevertheless, they can provide accurate and reliable estimates.

▶ Fig. 3 Spatio-temporal U-Net used by our team to directly estimate micro-parameters of an irreversible two-compartment model from 62 dy-
namic PET frames. The input of the network is a series of 62 2D slices of the patient (one per dynamic PET frame, size 112 × 112 with 2.5mm
squared pixels). The resulting 3D images of all four micro-parameters K1, k2, k3 and VB are generated thus slice by slice and compounded. The
architecture included skip connections within the spatio-temporal U-Net part. Additionally, two 3D convolution layers and a fully connected layer
were added do obtain the four desired channels (one per micro-parameter).

dC2

 dt = k3C1(t) – k4C2(t)

dC1

 dt = K1Ca(t) – k2C1(t) – k3C1(t) + k4C2(t)

dC1

 dt = K1Ca(t) – k2C1(t)
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Those include invasive and non-invasive data-driven methods that
do not require a priori hypotheses about the underlying model
structure. Examples for data-driven methods are graphical meth-
ods of Patlak and Logan [2, 3]. These methods transform the data
in such a way that, after a suitable time, certain kinetic modelling
parameters (called often macro-parameters, which are functions
of micro-parameters) can be calculated using a linear regression
of the transformed data, making parameter estimation more effi-
cient and less prone to noise compared to non-linear estimation
techniques. These methods are suitable for generating parametric
images, which means that a time activity curve is derived from
each voxel in the image, from which kinetic parameters are de-
rived and then stored in the corresponding voxel in that image.
The Patlak representation applies to tracers with irreversible trap-
ping, such as [18F]FDG, and in this case allows the calculation of
parametric images of the rate of net influx, Ki [2]. For tracers
with reversible binding, the Logan representation allows the cal-
culation of parametric images of the distribution volume VT [3],
as for [18F]flumazenil [12].

Applications for tracer kinetic modelling

Machine learning methods have been applied to different data
processing steps for tracer kinetic modelling. In this section, we
refer to publications that address the prediction of the arterial
input function, the kinetic modelling parameters and the model
selection, both in clinical and preclinical studies.

a) Prediction of the arterial input function

Most tracer kinetic models take for granted that the arterial input
function is known. As discussed above, this curve is not necessar-
ily known, yet extracting it from the image data is a promising
front for machine learning applications.

In a clinical [15O]H2O brain PET study, which included both base-
line scans and scans after a pharmacological intervention, the goal
was to investigate whether an arterial input function can be accu-
rately predicted by machine learning. Kuttner et al. [6] used a pre-
diction method based on a Gaussian process for this purpose, which
followed on from their initial preclinical method with mice [13]. Dif-
ferent image-derived time activity curves of the carotid artery were
used as training datasets, both scans at baseline and scans after
pharmacological intervention. The prediction method was evaluat-
ed by comparing measured arterial blood samples and machine
learning-based blood curves. Furthermore, the kinetic modelling
parameters (values of cerebral blood flow in the whole brain grey
matter) derived from experimental and machine learning-based in-
put functions were compared. The results showed good agreement
of the input functions and a strong correlation between methods.
Baseline data and data after pharmacological intervention could
be successfully distinguished.

Wang L et al. [14] proposed a deep convolutional neural
network to directly deriving the arterial input function from the
dynamic PET frames. They trained and evaluated their approach
with two datasets, one with 35 patients injected with [18F]FDG,
and one with 26 patients within a brain PET study using
[11C]DPA-713. They evaluated two models and compared the

model results with the manually extracted image-derived input
function yielding qualitatively satisfactory results. They further
used the obtained input function to estimate the macro-param-
eter Ki yielding an acceptable root mean square error with respect
to the manual method.

Ding et al. [15] proposed a dual-tracer dynamic PET protocol
for patients with neuroendocrine tumors, using the tracers
[18F]FDG and [68Ga]Ga-DOTATATE. Their clinical study included a
machine learning algorithm (namely, recurrent extreme gradient
boosting) in order to automatically separate the arterial input
function of both tracers and as such enable derivation of the
kinetic micro-parameters for both tracers separately. They
evaluated their approach in 12 patients concluding that the use
of the machine learning approach enables separation of the kinet-
ic information in the given dual tracer setup by separating the in-
jection of both radiopharmaceuticals by only 5min.

In all reviewed works, it could be shown that machine learning
methods can be successfully used in human and animal studies to
non-invasively estimate the arterial input function. However, a
broad clinical and preclinical application is pending. With regard
to the estimation of the arterial input function, further applica-
tions of machine learning methods could e. g. lie in the correction
of the time delay of the input function and the dispersion of the
radiotracer in the blood. When taking arterial blood samples, de-
lay and dispersion effects occur in relation to the radiotracer in the
arterial blood in the brain tissue and the corresponding blood
sample. These effects play a role especially in whole-body PET
and must be taken into account, conventionally by including a de-
lay and blood volume term in the model equations. Furthermore,
machine learning methods could prove useful for correcting for
radiotracer metabolites. This means that further development of
approaches is imperative, as the use of machine learning methods
in determining/predicting the arterial input function avoids the
disadvantages of invasive arterial blood sampling and or other,
image-based approaches (e. g. partial volume effects, predefined
assumptions about the model function). In preclinical research,
there is also the fact that longitudinal studies are only possible
without arterial cannulation. Machine learning methods offer the
possibility to circumvent these disadvantages and to non-inva-
sively assess the arterial input function.

b) Prediction of kinetic parameters

Deriving kinetic parameters, either micro- or macro-parameters,
requires non-linear optimization, a task that is often dealt with
using machine learning tools. As a result, applying such methods
directly on dynamic images for parameter estimation is a straight-
forward option.

In a human [18F]FDG study, Pan et al. [16] developed a kinetic
modelling method that uses a support vector machine algorithm,
or to be precisely, support vector regression, for prediction of kinet-
ic modelling parameters. The method uses a predefined reference
database of tumor data and specifically addresses the fitting of noisy
data. The parameters of the kinetic modelling were compared with
those obtained with the conventional iterative fitting. Statistical a-
nalysis revealed that the machine learning based method is a robust
method, which is also reproducible and user-independent.
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Golish et al. [17] proposed using a neural network to estimate
kinetic parameters directly from time-activity-curves. They eval-
uated this in a simulation study as well as in four canine experi-
ments with [13N]ammonia. The simulation analysis showed that
the error of the neural network was comparable with the conven-
tional Patlak method and with a weighted non-linear regression,
while in the canine study (where no ground truth was available)
the correlation of the methods showed differences below 10%.

Recently, a simulation study for human brain [18F]FDG and
[11C]flumazenil data aimed to estimate kinetic modelling param-
eters without an arterial input function. Wang B et al. [18] used
deep neural networks to predict parametric images of modelling
macro-parameters, such as Ki and VT. They considered the macro-
parameters as nonlinear functions of the activity concentration of
the tracer and used deep learning to determine this nonlinear
function to obtain the macro-parameters directly from dynamic
PET data. The results demonstrated superior performance of
deep neural networks as compared to Patlak and Logan analyses
in terms of robustness and accuracy.

In a study by Wang R et al. [19], deep learning methods were
used to predict [11C]UCB-J PET images from [18F]FDG images
using U-Net models. Quantitative and semi-quantitative param-
eters, using the cerebellum as reference region, were calculated.
Four models were trained and tested: 1) [18F]FDG SUV ratio
(SUVR) to [11C]UCB-J SUVR, 2) [18F]FDG Ki ratio to [11C]UCB-J
SUVR, 3) [18F]FDG SUVR to [11C]UCB-J distribution volume ratio
(DVR), and 4) [18F]FDG Ki ratio to [11C]UCB-J DVR and also a
[18F]FDG SUVR to [11C]PiB SUVR network was trained and tested
for [11C]PiB image prediction. The results showed that synthetic
[11C]UCB-J PET images from [18F]FDG images can be calculated
with reasonable prediction accuracy whereas predicting [11C]PiB
SUVR images from [18F]FDG images, requires additional diagnos-
tic information.

In a brain [11C]DASB-PET study, Cui et al. [20] examined an
unsupervised deep learning-based denoising method, i. e., condi-
tional deep image prior (CDIP), for calculation of parametric ima-
ges using Logan graphical analysis (reference tissue model [21]).
Anatomical information based on the patient's computed tomog-
raphy (CT) or magnetic resonance (MR) image was used as net-
work input. Compared with the conventional method, the pro-
posed method generated parametric images with more detailed
structures, as shown in simulated and patient data, and improved
contrast-to-noise ratios.

In a [11C]raclopride simulation study for rat brain data, Fuller
et al. [22] examined a number of machine learning algorithms to
detect and classify transient changes in voxel-based time-activity
curves. Those included support vector machine classifiers, shal-
low feedforward neural networks, convolutional neural networks
and long short-term memory networks. For the analysis, simulat-
ed [11C]racloprid data, covering a wide range of known noise lev-
els and activation response magnitudes, were used to train and
test the machine learning algorithms. At all noise levels tested,
the use of machine learning algorithms resulted in an improve-
ment in specificity, and no decrease in sensitivity, compared to
the linear parametric neurotransmitter PET method [23], with
which the method was compared.

From our own team, De Benetti et al. [24] lately introduced a
spatio-temporal deep neural network to derive the micro-param-
eters of a two-compartment model for [18F]FDG in an unsuper-
vised way. They evaluated it in a dataset with 23 patients having
62 frames of variable duration acquired with a long field-of-view
scanner over a full hour immediately after injection. The network,
based on a U-Net architecture, predicted directly a 4-channel 3D
volume, namely, a K1, k2, k3 and VB. They assumed k4 to be zero
and compared their results with a curve-fitting approach at vox-
el-level and the previous literature yielding comparable metrics
and qualitatively match the expected distribution (▶ Fig. 3).

In a whole body [18F]FDG PETstudy, Huang et al. [25] investiga-
ted the feasibility of generating parametric PET images directly
from static PET scans using deep learning, enabling significant re-
duction in scanning time. The proposed approach yields qualita-
tively and quantitatively consistent results with reference images,
holding promise for enhancing patient comfort and efficiency in
clinical settings, although further research is needed to validate
clinical applications and interpret the network models.

Wang H et al. [26] presented a deep learning approach that
utilizes static PET images to synthesize highly correlated and
consistent dynamic parametric images, as shown for images
from patients with lung cancer diagnosis. The method outper-
formed existing networks in terms of image quality, correlation,
and clinical evaluation, providing a valuable quantitative diagnos-
tic reference for clinicians seeking enhanced cancer detection and
quantification.

In summary, the applications of machine learning methods are
manifold and relate to the shortening of data acquisition and the
handling of noise in measurement data by means of (modified)
support vector machines; furthermore, applications lie in the field
of parametric imaging, even without an arterial input function,
using neural networks. Further applications of machine learning
methods with regard to kinetic parameter prediction could be
found, for example, in dealing with multi-bed dynamic PET acqui-
sitions, or modelling not only arterial, but also venous tracer
input. Machine learning techniques have proven to be suitable in
terms of good statistical performance, low computational cost
and general applicability for parametric imaging.

c) Support in parametric image reconstruction

In contrast to estimation from reconstructed images, parametric
images can be also estimated directly from raw measurements,
such as sinograms. The combination of reconstruction and para-
metric image estimation is called parametric image reconstruc-
tion [27]. It has the advantage of avoiding amplification of noise
in two-step estimation and improving the quality of parametric
images. However, direct parametric image reconstruction in-
creases methodological complexity, to which machine learning
or deep learning can additionally contribute.

For [18F]FDG and [11C]PIB PET data sets, Gong et al. [28] intro-
duced an unsupervised deep learning approach for direct para-
metric reconstruction from dynamic sinograms. By incorporating
patient anatomical information and a kernel layer for denoising,
along with an embedded linear kinetic model, the framework
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shows improved performance over conventional and kernel-based
methods on various tracer datasets.

In a [18F]FDG study, using a PET scanner with a long axial field-
of-view, Li Y et al. [29] presented a deep learning framework that
reconstructs high-quality Patlak Ki parametric images from lim-
ited-frame sinograms without the need for an input function.
Their results demonstrated the method's potential to address
challenges related to long scan times and input function depen-
dency, offering improved efficiency and accuracy for dynamic
PET imaging in a clinical context.

d) Kinetic model selection

For different tissue types, e. g. in the brain or whole body, the ki-
netics of a given tracer may underlie different model structures.
Therefore, data-driven methods that can be generalised to any
number of compartments and allow the estimation of macro-
parameters are particularly suitable for parametric imaging. For
the selection of the underlying model structure, statistical tests
such as the F-test, the Akaike information criterion or the Schwarz
criterion are conventionally used; recently, approaches based on
machine learning methods have been proposed.

In a [11C]racloprid study, using real human imaging data and
simulation data, Klyuzhin et al. [30] examined a number of ma-
chine learning algorithms for selection of the underlying model
structure as assessed by the linear parametric neurotransmitter
PET method [23]. Machine learning algorithms included a number
of artificial neural networks and, in addition, the use of “persona-
lized” artificial neural networks, i. e. that operate on a data set of a
particular subject and scan. The training of the personalized arti-
ficial neural networks was carried out using simulated image data,
taking into account the signal and noise properties of the “real
world” measurement data. The performances of the algorithms
were compared with the results of the F-tests on the residuals of
the model fits (which resulted from the application of the linear
parametric neurotransmitter method). In this work, the applic-
ability and superiority of the artificial neural networks could be
shown on simulated as well as “real world” data, compared to
the conventionally used F-test. This is in line with the [11C]raclo-
pride simulation study for rat brain data by Fuller et al. [22]. Also
in this work, machine learning algorithms showed better perform-
ance as compared to statistical F-tests (combined with cluster size
analysis).

In general, these studies demonstrated that machine learning
is superior to conventional methods, such as the statistical F-test,
in selecting the model underlying the kinetics of the tracer.

e) Auxiliary and downstream tasks

Machine-learning approaches do not only need to target the
major tasks of tracer kinetic modelling, but also can deal with aux-
iliary tasks that improve the dynamic PET data, and as result can
facilitate or help obtain higher quality kinetic models. Also, down-
stream tasks after obtaining kinetic parameters can also profit
from machine learning. Such downstream tasks can be, for in-
stance, the detection of tumor tissue or anomalies in the kinetic
behaviour.

Spuhler et al. [31] introduced a convolutional neural network
to generate patient-specific transmission maps from T1-weighted
images of the brain, which served for MR-based attenuation
correction of the PET data. They evaluated their approach on a
dataset with 11 patients scanned with [11C]WAY-100 635 and
10 others with [11C]DASB. Static and dynamic PET data were re-
constructed using synthesized and 68Ge-transmission data with
filtered backprojection. As metrics they used the quality of the
PET images, but also the quality of the derived kinetic parameters.
Overall, they claim the generated transmission maps produce
comparable images with deviations to the state-of-art in the
range of less than 2%.

In a brain study, Klyuzhin et al. [32] used machine learning for
denoising dynamic [11C]raclopride PET images. They proposed a
denoising autoencoder neural network and compared it with con-
ventional denoising methods. The denoised images were then
used to derive kinetic parameters. They used simulated dynamic
PET images such that quantitative evaluations were possible. The
machine learning denoised images enabled to calculate kinetic
parameters with higher uniformity, lower coefficient of variation
of voxel values and higher structural similarity index.

In a [18F]FDG brain PET/MRI study in humans, the goal was to
develop an approach for motion correction that is based on con-
ditional generative adversarial networks with specific regard to
image-derived arterial input functions. In the work of Shiyam Sun-
dar et al. [33] the subject's motion during the PET measurement
was determined from contemporaneously acquired MR naviga-
tors for six degrees of freedom (translations, rotations) and used
to correct the training data set. These data set were augmented
by means of rotation, translation, shearing, additive gaussian
noise, brightness, contrast, which yielded synthetic data sets and
mappings were calculated between individual frames and a refer-
ence frame (55–60min after injection). With regard to the deter-
mination of the arterial input function, experimentally collected
blood samples served as reference. The input function derived
from the image as calculated by conditional generative adversarial
networks was compared with the experimentally determined ar-
terial input function based on the areas under the curves and the
calculated average cerebral metabolic rates of glucose levels in
the grey matter. It was shown that the conditional generative ad-
versarial network methodology is suitable for motion correction
of brain PET/MRI data and allows the determination of an image-
based input function through the correction.

Feng et al. [34] proposed the use of deep learning to improve
the quality of the estimation of Patlak macro-parameters from
dynamic [18F]FDG PET images. They used a convolutional neural
network trained on pairs of Patlak images obtained by direct Pa-
tlak reconstruction (i. e., direct reconstruction of the Patlak mac-
ro-parameters from PET sinograms) and indirect reconstruction
(i. e., derivation of Patlak parameters from reconstructed direct
images). The evaluation and training was performed on a multi-
bed dynamic PET dataset with 10 patients. A population-based in-
put function was assumed. The root mean square difference was
dropped by half between both direct and indirect reconstructions
pointing at the value of using deep learning to improved indirect
Patlak reconstructions.
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Xie et al. [35] introduced a similar deep learning approach as
Feng et al., but they included motion-correction for the direct Pa-
tlak reconstruction. The results of 15 patients undergoing dynam-
ic [18F]FDG PET of the brain produced significantly lower contrast-
to-noise ratios for the machine learning approach when compar-
ed to conventional denoising methods such as Gaussian, nonlocal
mean and BM4D denoising.

A machine learning method for automatically detecting pros-
tate tumors at voxel-level from dynamic PET data from [11C]cho-
line patients was proposed by Rubinstein et al. [36]. They evaluat-
ed their approach using data of 24 patients and using a deep
autoencoder to extract features which were combined with kinet-
ic parameters extracted with conventional methods and hand-
crafted radiomics to detect anomalous voxels. Their best algo-
rithm offered a high area under the receiver operating character-
istics curve (AUC-ROC) above 0.8 which is a promising result for
the type of data used.

In a clinical study with 11 non-small cell lung cancer patients
undergoing dynamic PET/MRI using [18F]FDG, Besson et al. [37]
showed that machine learning classification yielded a tumor de-
tection accuracy of 97 % if given hand-crafted features obtained
from the dynamic PET/MRI including the kinetic micro-param-
eters k2 and k3, as well as dynamic contrast-enhanced MRI perfu-
sion (DCE) parameters.

Finally, Abazari et al. [38] used generative adversarial networks
and biomathematical models to introduce a framework for gener-
ating synthetic PET images for different tumor scenarios. The re-
sulting simulations are compared with published data showing
very similar behaviour both quantitatively and qualitatively. This
work is purely in-silico but bears significant value to validate kinet-
ic modelling tools.

Overall, the research shows that kinetic information bears rele-
vant information for multiple downstream tasks in the pipeline of
dynamic PET image analysis. Machine learning approaches enable
the combination of kinetic parameters with additional data in or-
der to extract more information out of the images.

Steps into clinical practice

The research works presented here show the potential of machine
learning for tracer kinetic modelling, yet the answer remains, how
this can help pushing it into clinical practice. To the best of our
knowledge, medical device companies have not yet released ma-
chine learning tools for tracer kinetic modelling, yet in particular
the producers of large field-of-view PET devices are actively work-
ing on such tools. Additionally, some of the research papers pres-
ented offer the implemented code as open source, enabling other
researchers and clinicians to deploy it in their own setup.We
believe that within the next few years these developments could
accelerate the use of tracer kinetic modelling in research and pos-
sibly also in routine clinical works. Yet, the path thereto is not
short and both market needs and the regulatory frame will control
the speed of this development.

Conclusion

Tracer kinetic modelling despite its potential has not made it to
clinical practice. Yet, machine learning works have shown that
several of its aspects such as derivation of the (arterial) input func-
tion, estimation of kinetic parameters, or selection of models, can
strongly profit from it. Moreover, machine learning has been
shown to be helpful in several downstream tasks such as automat-
ic generation of attenuation maps, image denoising, motion-cor-
rection or tumor detection. With the rapid developments in the
field of artificial intelligence more advantages are to be expected
and possibly a breakthrough in the clinical use of dynamic PET in-
formation.
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