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ABSTRACT

Background In recent years, AI has made significant ad-

vancements in medical diagnosis and prognosis. However,

the incorporation of AI into clinical practice is still challenging

and under-appreciated. We aim to demonstrate a possible

vertical integration approach to close the loop for AI-ready

radiology.

Method This study highlights the importance of two-way

communication for AI-assisted radiology. As a key part of the

methodology, it demonstrates the integration of AI systems

into clinical practice with structured reports and AI visualiza-

tion, giving more insight into the AI system. By integrating co-

operative lifelong learning into the AI system, we ensure the

long-term effectiveness of the AI system, while keeping the

radiologist in the loop.

Results We demonstrate the use of lifelong learning for AI

systems by incorporating AI visualization and structured re-

ports. We evaluate Memory Aware-Synapses and Rehearsal

approach and find that both approaches work in practice. Fur-

thermore, we see the advantage of lifelong learning algo-

rithms that do not require the storing or maintaining of sam-

ples from previous datasets.

Conclusion In conclusion, incorporating AI into the clinical

routine of radiology requires a two-way communication ap-

proach and seamless integration of the AI system, which we

achieve with structured reports and visualization of the in-

sight gained by the model. Closing the loop for radiology

leads to successful integration, enabling lifelong learning for

the AI system, which is crucial for sustainable long-term per-

formance.

Key Points:
▪ The integration of AI systems into the clinical routine with

structured reports and AI visualization.

▪ Two-way communication between AI and radiologists is

necessary to enable AI that keeps the radiologist in the

loop.

▪ Closing the loop enables lifelong learning, which is crucial

for long-term, high-performing AI in radiology.

ZUSAMMENFASSUNG

Hintergrund In den letzten Jahren hat die KI erhebliche For-

tschritte bei der medizinischen Diagnose und Prognose er-

zielt. Jedoch bleibt die Integration von KI in die klinische Praxis

eine Herausforderung und wird nicht ausreichend gewürdigt.

Wir wollen einen möglichen vertikalen Integrationsansatz

aufzeigen, um den Kreislauf für eine KI-kompatible Radiologie

zu schließen.

Methode Diese Studie unterstreicht die Bedeutung der

wechselseitigen Kommunikation für die KI-gestützte Radiolo-

gie. Darüber hinaus wird als wesentlicher Teil der Methodik

die Integration des KI-Systems mit strukturierten Berichten

und KI-Visualisierungen in die klinische Praxis demonstriert.

Durch die Integration von lebenslangem Lernen stellen wir

die langfristige Effektivität der KI sicher und halten gleichzei-

tig den Radiologen auf dem Laufenden.

Review
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Ergebnisse Wir demonstrieren den Einsatz von lifelong learn-

ing für KI-Systeme durch die Einbeziehung von KI-Visualisie-

rungen und strukturierten Befunden. Wir evaluieren Memory

Aware-Synapses und Rehearsal-Methoden und zeigen in der

Praxis, dass beide funktionieren. Wir sehen vor allem Vorteile

von Algorithmen für lifelong learning, wie Memory Aware-Sy-

napses, wenn sie keine Muster aus früheren Datensätzen spei-

chern oder verwalten müssen.

Schlussfolgerung Die Einbindung von KI in die klinische Rou-

tine von Radiologen erfordert einen zweiseitigen Kommuni-

kationsansatz und eine nahtlose Integration des KI-Systems

mit strukturierten Berichten und KI-Visualisierungen, die Er-

kenntnisse des KI-Models repräsentieren. Die erfolgreiche

Integration führt zu einem Kreislaufsystem mit Radiologen,

das lebenslanges Lernen für KI-Systeme ermöglicht, was für

die langfristige und nachhaltige Leistungsfähigkeit entschei-

dend ist.

Kernaussagen:
▪ Wir demonstrieren die Integration von KI-Systemen in kli-

nische Routinen mit strukturierten Berichten und KI-Vi-

sualisierungen.

▪ Eine bi-direktionale Kommunikation zwischen KI und Radi-

ologen ist notwendig, um KI im radiologischen Alltag zu

ermöglichen.

▪ Der vorgestellte Kreislauf ermöglicht lebenslanges Lernen,

was für eine langfristige, leistungsstarke KI in der Radiolo-

gie entscheidend ist.

Zitierweise
▪ Fuchs M, Gonzalez C, Frisch Y et al. Closing the loop for AI-

ready radiology. Fortschr Röntgenstr 2024; 196: 154–162

Introduction

The introduction of deep learning models in clinical radiology is
evolving more gradually than anticipated due to issues involving
effectiveness, regulatory concerns, and the difficulty in establish-
ing sustainable business models [1, 2]. Furthermore, the develop-
ment of artificial intelligence-driven radiology requires trust and
interpretability of AI systems for radiologists and patients [3–5].
Deep learning and AI-driven radiology have the potential to aid
radiotherapy planning [6] and tumor detection [7], among other
use cases. These technologies promise to improve the accuracy
and efficiency of many critical processes, leading to better patient
outcomes.

For AI systems to become more relevant for radiology in prac-
tice, AI support needs to become seamless to reduce the time
spent per case. Recent developments in AI try to elevate the tight
time constraints that radiologists face when reviewing cases,
which lead to missed findings and long turnaround times [8]. Con-
sidering this situation, we see the need for vertical integration of
images of AI-driven decisions and machine-readable structured
reports to support decision-making with AI systems.

Most current research bypasses complex technical integration
into real-world applications by simplifying assumptions or work-
ing only with immaculate data that have been carefully cleaned
and homogenous datasets selected for the research. In real-world
applications, the data gathered in hospitals is heterogenous due
to differences between hospital infrastructures, different devices,
or other inconsistencies. As a result of such domain shifts, many AI
systems suffer fromworse performance in practice as the AI sys-
tem ages [9, 10] or is deployed in new environments [11–13].
Common domain shifts occur between different institutions due
to changes in populations or devices. The data also shifts over
time due to updates to reconstruction algorithms and acquisition
protocols. Neglecting technical integration problems while
benchmarking assistive technology in isolation leads to silent fail-
ures of AI systems [9–13].

A leading approach to address this problematic setting is the
concept of lifelong learning [10, 13, 14], also known as continual
learning. We first developed an AI system to the best of our knowl-
edge and continuously updated the system with new data. This
concept has the advantage that it can handle data until it be-
comes inaccessible, e. g., due to GDPR [15], or adapt to newly
available data distributions, e. g., in the case of COVID-19 [16].
An example of how these advantages can be leveraged to provide
fast adaptability to unpredictable events, such as future pan-
demics, is by allowing individuals to altruistically share their rele-
vant data without compromising their privacy. As the AI system
matures, individuals may want to redact any shared data they
had initially provided. This can be done without impacting the
overall performance of the AI system.

In order to integrate lifelong learning into the clinical work-
flow, we must engage our AI systems in cooperative lifelong
learning with radiologists. For successful collaboration, the AI sys-
tem needs to receive information from radiologists through a ma-
chine-readable format instead of unstructured text. The radiolo-
gist, similarly, must receive human-readable insight from the AI
system. A machine-readable report uses a structure that complies
with guidelines and grasps relevant information without incurring
additional costs. While the benefits of lifelong learning are evident
[14], current medical device regulations hinder its applicability.

To collect structured reports efficiently, we support the radiol-
ogist with images of the insight gained by the AI system [17]. This
insight needs to integrate seamlessly into the clinical workflow of
a radiologist in order to foster trust and enhance the effectiveness
of the cooperation. The integration of AI systems with structured
reports, lifelong learning, and AI images enables realistic studies
regarding AI that keeps the radiologist in the loop.

As an example of such a workflow, we demonstrate a possible
use for diagnosing pulmonary embolism (PE) from CT scans. This
article shows the integration of visualization techniques for AI sys-
tems with structured reports and lifelong learning. The system
gives reliable insight into the model’s predictions for radiologists
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while collecting crucial information and increasing comprehensi-
bility. Furthermore, we show how to integrate images in any exist-
ing PACS framework and enable structured reporting with AI sup-
port with the press of a single button.

Materials and Methods

In order to achieve the complex vertical integration of our system,
we first summarize possible methods to provide interpretable AI
visualization and explain how a radiologist can use and interpret
such images. Secondly, we outline how we built the structured re-
porting template. Lastly, we describe the integration of all con-
cepts into the clinical workflow to enable lifelong learning and a
sustainable high-quality AI system.

AI Visualization

One of the predominant directions for interpretable AI is the
usage of saliency maps [18, 19], which visualize the most relevant
part of the image for the given prediction. However, recent re-
search has shown some caveats when estimating saliency maps
[19–21]. The most relevant concern is that a saliency map can
highlight irrelevant regions, stick to edges, or be easily fooled by
minimal changes [1, 18–20]. It has also been shown that the high-
lighting changes immensely with the neural network architecture
[19] and only produces relevant insight for 2 D images. Further-
more, a user study showed that predicting how a given neural net-
work’s saliency map looks is impossible for humans [21]. These is-
sues are detrimental to saliency map’s comprehensibility for a
radiologist and could have severe implications for their wide-
spread adoption.

However, saliency maps are most valuable when localization is
essential for the task, as in detecting PE [22]. In our framework, as
is common among the winning RSNA PE detection models [23],
we use a two-stage solution: we first train a SEResNeXt (50 layers)
[24] on a slice-wise annotation level. Subsequently, we aggregate

the 128 features with a two-layer LSTM [25] from the second to
last layer for the whole volume prediction per patient.

We generate three different images to provide transparencies
of the prediction probability. We select the best image that bal-
ances local information and comprehensibility for our radiolo-
gists. As a comparison, we also visualize the slice-wise saliency
map, using the predicted probability for each slice of the first
stage of our model.

▶ Fig. 1 shows the four different approaches on the same
frame – starting from the left, the whole screen and a cutout over-
lay, which displays the overlay only for positively predicted slices.
The overlay uses alpha-blending [26], with the alpha values being
proportional to the probability as intensity to indicate confidence
in the prediction. However, our clinicians found the alpha values
hard to judge. As the alpha value approaches higher values, the
image only shows the overlay, making it hard to diagnose. The
third example displays a bar, with alpha = 0.5, that indicates the
positive prediction probability at the top of the torso, ranging
from zero (left) to one (full bar till right). Lastly, we generate sal-
iency maps with M3d-CAM [27]. We evaluate multiple methods
for saliency visualization, and our radiologist found the implemen-
tation of Grad-cam++ [28] to consistently yield the best match.
However, the example in ▶ Fig. 1 shows how saliency maps might
highlight non-relevant parts for detecting PE. This might distract
clinicians, obstruct their view, and ruin their trust in the AI system,
discouraging future usage. Furthermore, we often observed ma-
jor changes in saliency maps by moving a single slice. The poor
performance of saliency maps can be attributed to the sparse la-
belling of the CT volumes rather than giving slice-wise informa-
tion, in our hospital’s data annotations.

Structured Reporting

Structured reporting is a method of describing medical images in
a consistent way. A structured reporting scheme is fundamental
for AI systems to engage in lifelong learning. One of the main ad-
vantages of integrating structured reports with lifelong learning

▶ Fig. 1 Four different images providing transparent insight for interpretable AI. The whole screen overlays the predicted class probability for the
presence of a PE. The cutout version leaves a clear view window so as not to obstruct the view. The bar score displays the probability (here 51%)
from zero to one hundred percent (from left to right) above the corpus. The saliency maps show how slice-wise activation maps can be misleading
by not correctly highlighting the PE.

▶ Abb.1 Vier verschiedene Visualisierungen bieten Einblicke für eine interpretierbarere KI. Der Gesamtbildschirm überlagert die vorhergesagte
Klassenwahrscheinlichkeit für das Vorhandensein einer Lungenarterienembolie (LAE). Die Ausschnittversion lässt ein freies Sichtfenster, um die
Sicht nicht zu behindern. Die Balkenanzeige über dem Korpus zeigt die Wahrscheinlichkeit (hier 51%) von null bis hundert (von links nach rechts)
Prozent an, das diese Sicht eine Embolie enthält. Die Salienzkarten zeigen, wie die scheibenweise Aktivierung irreführend sein kann, da sie die LAE
nicht korrekt hervorhebt.
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into radiology is the ability to improve the interpretability of deep
learning models.

In this section, we describe how we design our scheme and
adapt it to better serve the integration of AI systems into the clin-
ical workflow. First, we develop the structured reporting template
for PE localization according to guidelines and our radiologists
[29, 30]. The basic template covers all mandatory topics and
questions to answer regarding PE. This includes a structure to
classify the PE location according to different levels: central, lobar,
segmental (seg.), and subsegmental (subseg.). Furthermore, we
divide each side of the lung into three segments consisting of up-
per, middle, and lower for the left and right sides. Finally, a bifur-
cation can be labelled separately, resulting in 21 location labels.
We support this with an easy-to-fill design in the OHIF Viewer [31]
while leaving room to capture additional patient information. The
different images are in the left bar. Our design allows for the com-
munication of insight from the AI system to the clinician while
being able to switch back to the original CT scan. By filling the re-
port with more information in a structured way, the radiologist al-
lows us to feed the AI system with new knowledge.

Additionally, our template includes fields for location and
measurement of probability for all labels, which open up when a
respective field is selected. The added transparency, provided by
probabilities and visualization, increases the perceived reliability
and trust in the AI system. However, the template can only cover

some possible information in a structured way. Creating a com-
prehensive template that encompasses every potential finding in
a chest CT scan is not possible since new unknown diseases are
going to emerge (e. g., COVID-19). Consequently, it is crucial to
determine an effective approach to address rare findings, such as
atypical pathologies (e. g., Castleman’s disease), foreign bodies
(dental work, misplaced catheters), or anatomical variations
(Azygos lobe, Horseshoe lung).

Therefore, we still offer the possibility of adding relevant ob-
servations in plain text. The unstructured text is essential for
maintaining the daily clinical workflow, especially for sporadically
occurring cases, as the information would otherwise be lost. How-
ever, text is initially hard to process for any AI system. Future AI
systems could integrate this lost information with the help of ad-
vanced large language models. An example of a fictional patient
being opened for reporting is shown in ▶ Fig. 2.

Integration and Workflow for Lifelong Learning

To integrate the AI images into the radiology workflow, we run our
model automatically on thorax CT examinations and generate
possible predictions for PE location. We then extract the images
and forward them as an additional modality. An overview of the
integration is illustrated in ▶ Fig. 3.

Reporting on a workstation is quickly started by clicking on the
selected study, which opens the reporting platform. The platform

▶ Fig. 2 The integration of our bar score images for more transparent AI systems with the structured reporting template in the OHIF viewer. The
viewer offers an intuitive and easy-to-fill design of the structured report for our use case of PE detection.

▶ Abb.2 Die Integration unserer Balkenanzeige Visualisierungen für transparentere KI-Systeme mit der strukturierten Befundvorlage im OHIF-
Viewer. Der Viewer bietet ein intuitives und einfach auszufüllendes Design eines strukturierten Befunds für unseren Anwendungsfall der LAE-
Erkennung.
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consists of two parts. First, the study is displayed on the left half of
the screen. The clinician can choose between the standard CT
scan or the CT with the image of the prediction results in the left
bar. Second, the template is opened on the right side, enabling
structured reporting for the selected task according to appropri-
ate guidelines. The AI system pre-fills the reporting template for
the learned tasks. Additionally, it offers further information, such
as predicted probability and images of the relevant slices for the
prediction. The radiologist can use this information to accelerate
the report’s completion and avoid missing findings, e. g., in the
case of multiple PEs.

After the radiologist completes the report, the new ground
truth annotation can be fed back to the AI model for further im-
provement. This functionality opens up the possibility of adapting
the AI system over time, which prevents the deterioration of mod-
el performance as time passes and data distribution changes [9,

10]. This loss in performance often goes unnoticed, as deep learn-
ing models report high confidence even for low-quality predic-
tions. This is denoted as silent failure. Allowing for model adapta-
tion also makes it possible for the model to work in new hospital
environments [9, 10, 16].

However, training models continuously introduces new risks
that must be cautiously handled. For starters, care must be taken
to avoid catastrophic forgetting [14]. In this phenomenon, the
model’s performance with respect to data from older distribu-
tions deteriorates significantly. The goal is to train a model that
produces high-quality predictions for all data sources seen during
the training process.

We address these two challenges, namely the inherent hetero-
geneity of data and catastrophic forgetting, in the following
fashion.

▶ Fig. 3 Overview of the workflow that integrates the AI system into the reporting systems. When a new CT sample is generated, the AI system
preprocesses the image to pre-fill the structured report and provides insight via the images. With a single press of a button, the reporting template
with the images can be opened, and the report can be finalized. Finally, the information gained can be used to improve the AI model during later
training episodes.

▶ Abb.3 Überblick über den Arbeitsablauf, der die KI- und Krankenhaussysteme integriert. Wenn eine neue Thorax CT-Probe generiert wird, ver-
arbeitet das KI-System das Bild vor, um den strukturierten Befund vorauszufüllen. Die Visualisierungen bieten Einblicke in die KI und können die
Befundung beschleunigen. Mit einem Tastendruck wird die Befundvorlage mit den Visualisierungen geöffnet und der Befund kann ergänzt und
verbessert werden. Schließlich können die gewonnenen Informationen dazu verwendet werden, das KI-System in späteren Trainingsepisoden zu
verbessern.
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For the first problem, our structured reporting template pro-
vides a solution of structuring the output data for the AI system.
While CT images vary from hospital to hospital as well as device to
device, they are denoted in HU [32] and basic interoperability is
given by the DICOM standard. However, this still might lead to a
performance drop when the distribution of data shifts quite sig-
nificantly, as seen for our red hospital in ▶ Fig. 4.

To achieve resiliency against catastrophic forgetting, we
explore different popular continual learning methods. The first is
Rehearsal [33], where we interleave samples (20%) from the pre-
vious datasets into the present training. This approach produces
good empirical results. However, GDPR guidelines [11] often do
not allow the storage of patient studies, and even if they do, the
studies could become unavailable later due to the right to forget.
We compare these results to Memory Aware Synapses (MAS) [34].
In contrast to Rehearsal, MAS identifies the most important model
parameters and prevents them from changing too much from
their initial state. Therefore, MAS would be preferable under
GDPR regulations.

Results

In our analysis, we take the typical approach of starting with a
state-of-the-art model pre-trained on a large, public, and hetero-
geneous dataset, namely the RSNA pulmonary embolism CT data-
set [22] and the challenge-winning model [23]. We further collect
cohorts from two German university clinics with our structured
reporting template, generating annotations on a sample-wise lev-
el. The radiologist found the system easy-to-use and approved the
transparency images. We examine the situation where we first
fine-tune the model using the first clinic data, then the second
clinic data. We aim to obtain a model that performs well across
all test sets and training orders. While the RSNA dataset enables
us to obtain a pre-trained model for the AI system, we adapt the
final classifier to the structure of the reporting template.

Our results are displayed in ▶ Fig. 4. Each clinic training set
consists of 694 samples, while the red clinic has 13.83% PE-posi-
tive results and the blue clinic has 30.55%. Each clinic’s test data-
set contains 86 examples, which we evaluate for PE detection and
location in the form of localization labels consisting of central, lo-
bar, seg., and subseg. embolisms. We first evaluate the latest da-
taset training based on the test set in red and then the previously
trained clinic in blue.

The results show how the simple rehearsal approach to train-
ing the AI system leads to consistent performance with respect
to PE detection (avg. accuracy of 75.85%) for both datasets. The
method causes a slight loss in ability to adapt to the data distribu-
tion of the latest clinic, e. g., rehearsal top row in red. Overall, the
rehearsal method performs well for detecting and localizing pul-
monary embolisms. However, it requires the storage of samples,
which may become problematic with GDPR standards. On the
other hand, MAS can keep up for the most part (avg. accuracy of
75.28 %) while reducing catastrophic forgetting and maintaining
the ability to adapt to the new clinic’s data.

Discussion

Reflecting on the results of our study, we find that the rehearsal
approach achieves consistent performance on both datasets but
lacks the ability to adapt to new data distributions. MAS instead
performs similarly well in terms of reducing catastrophic forgetting
and is more adaptable to new data. These findings are consistent
with previous studies on continual learning [34]. Furthermore, re-
hearsal requires storage of samples and may not comply with
GDPR standards, while MAS does not have these issues. Overall,
both methods have their advantages and limitations.

Despite the urgent need for lifelong learning AI systems for
radiology, the current legislative guidelines for medical devices
do not yet provide an acceptable framework for quick and effec-
tive model updating. This requires the AI system provider to ob-
tain approval whenever the system is deemed outdated [35, 36].
In practice, model updates – which incorporate new knowledge
on acquisition practices and changes in the population – only be-
come effective after a lengthy reverification cycle. Also, local fine-
tuning steps where the model is adapted to specific characteris-
tics of the data on-site become untenable.

We firmly believe that lifelong learning should be accompanied
by monitoring of the model performance and annotations that are
made. However, the current regulatory framework needs to in-
clude this significant opportunity for promoting the safe and ef-
fective use of AI. A potential solution to the current situation is a
pre-certification approach [37, 38] that consists of a change control
plan and predefined development and monitoring practices for
the manufacturer to develop and update their devices safely and
effectively rather than approving each individual update. How-
ever, we see two factors that must be improved upon for such an
approach to succeed. Firstly, a closer collaboration is needed be-
tween regulators, device manufacturers, academic researchers,
and other stakeholders to develop new strategies and guidelines
for lifelong learning medical devices. The second important factor
is increased transparency in AI systems, data acquisition, and the
evaluation process. Transparency can be achieved by providing in-
terpretable explanations and open access to the codebase, which
would allow for building trust and understanding with experts and
other stakeholders without regard to their background knowl-
edge. As current plans by the FDA suggest [39], it would be risky
to leave the design and evaluation of the development and mon-
itoring practices solely to one party. When measurements and
models can be updated at the same time, the risk for metric ma-
nipulation would be high to better suit marketing strategies or
avoid direct comparisons with competitors. This highlights the
importance of accountability and comparison of similar medical
devices.

We show with our results that lifelong learning is beneficial –
and indeed needed – for maintaining high predictive standards
through the product lifecycle. Structured reporting allows the
seamless integration of expert feedback into the learning loop.
Giving radiologists insight into the AI system in the form of appro-
priate images provides a second layer of reliability to increase trust
in our system.
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▶ Fig. 4 Comparison of Memory Aware Synapses (MAS) [34] and Rehearsal [33] approaches for lifelong learning. We first pre-trained our AI system
to predict PEs using the public RSNA dataset. Then we deployed the AI system in a first clinic, followed by a second clinic and vice versa. We eval-
uated the latest dataset training using the test set in red and the previously trained clinic in blue. On average, Rehearsal achieves an accuracy (Acc.)
for PE detection of 75.85% and MAS 75.28%. However, the performance between the two clinics varies. As we show at the top, this is not due to a
bias regarding sex and is rather due to different PE occurrence rates and sizes.

▶ Abb.4 Der Vergleich von Memory Aware Synapses (MAS) [34] und Rehearsal [33] der beiden Ansätze in der Situation des lebenslangen Lernens.
Wir haben unser KI-System zur LAE-Vorhersage auf dem öffentlichen RSNA-Datensatz vortrainiert. Als nächstes wird das KI-System in der ersten
Klinik eingesetzt, gefolgt von der zweiten Klinik und umgekehrt. Wir evaluieren zunächst mit denTestdaten von der zuletzt trainierten Klinik in Rot.
Anschließend wird die zuvor trainierte Klinik in Blau evaluiert. Im Mittel detektiert Rehearsal eine LAE mit einer Genauigkeit von 75,85% und MAS
mit 75,28%. Die Leistung zwischen den Kliniken schwankt stark, ein Geschlechtsbias (oder Alter), wie in dem Tortendiagramm zu entnehmen, ist
womöglich nicht vorhanden. Die Unterschiede sind am ehesten auf unterschiedliche Auftretensraten und Größen von Lungenembolien zurück-
zuführen.
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Conclusion

We present an easy-to-integrate workflow for lifelong learning
that leverages advances in structured reporting and interpretabil-
ity. Our approach builds on the vertical integration of AI-ready
radiology with a deep learning system, which requires two-way
communication between both parties. We incorporate reliability
measurements, namely prediction probabilities for labels and vi-
sualization to deliver dependable insight into the predictions of
an AI system. Cooperating radiologists found our approach to be
an easy-to-use system that facilitates lifelong learning. Further-
more, we discuss potential regulatory changes to improve the ap-
plicability of lifelong learning algorithms. Finally, we advocate for
better integration of AI in radiology departments and closer colla-
boration between AI systems and clinicians.
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