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Introduction

Platelets play a pivotal role in normal hemostasis and in
pathological thrombosis. They are recruited to the site of
vascular wall injury or ruptured atherosclerotic plaque
through the adhesive interactions between platelet glycopro-
teins and integrins with von Willebrand factor and subendo-
thelial collagen.1 In response to collagen and soluble agonists,
such as adenosine diphosphate (ADP) and thrombin, platelets
undergo activation, leading to the formation of a stable throm-
bus via two simultaneous processes. Activation of integrin
αIIbβ3 (also known as GPIIb/IIIa) results in the formation of
platelet–platelet homotypic aggregates via fibrinogen molec-
ular bridges, forming a physical barrier at the site of injury.2 In
response to strong stimulation, a subset of activated platelets

exposes negatively charged procoagulant phosphatidylserine
(PS) on their surface and supports generation of thrombin. The
thrombin burst localizes the formation of fibrin to the platelet
aggregate, thereby stabilizing the clot. Therefore, platelet
aggregation and procoagulant activity interplay to form a
platelet–fibrin thrombus.3,4

In clinical settings, evaluation of platelet function is vital
for detecting both inherited and acquired qualitative platelet
deficiencies. It is also used to diagnose systemic bleeding
disorders (►Fig. 1). Platelet function tests also play a role in
monitoring the efficacy of antiplatelet/antithrombotic med-
ications, which are widely used in treating cardiovascular
diseases. Anesthesiologists and surgeons often order such
tests as a means to screen for platelet-related bleeding
disorders prior to invasive procedures and interventions.5–8
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Abstract For more than 50 years, light transmission aggregometry has been accepted as the
gold standard test for diagnosing inherited platelet disorders in platelet-rich plasma,
although there are other functional approaches performed in whole blood. In this
article, several advantages and disadvantages of this technique over other laboratory
approaches are discussed in the view of recent guidelines, and the necessity of
functional assays, such as light transmission aggregometry in the era of molecular
genetic testing, is highlighted.
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Zusammenfassung Seit mehr als fünfzig Jahren gilt die Aggregometrie mittels Lichttransmission als
Goldstandard-Test zur Diagnose von erblichen Blutplättchenstörungen in Plättchen-
reichem-Plasma, obwohl es noch weitere funktionelle Testansätze in Vollblut gibt. In
diesem Artikel werden mehrere Vor- und Nachteile dieser Technik im Vergleich zu
anderen laborbasierten Ansätzen im Hinblick auf aktuelle Leitlinien diskutiert, und die
Notwendigkeit von funktionellen Assays, einschließlich der Aggregometrie mittels
Lichttransmission, im Zeitalter der molekulargenetischen Tests wird hervorgehoben.
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Among all the methods for platelet function testing,9–12

classic light transmission aggregometry (LTA) remains a his-
torical referencemethod and continuous to be used extensive-
ly. In this article, we describe the principles and adaptations of
this method, and discuss its advantages and disadvantages
comparedwith alternative platelet function tests, particularly
in relation to the inherited disorders in pediatric populations.
Furthermore, we strive to answer the question: Is thismethod
still necessary or has it become outdated?

Method

A literature search strategy was developed using the PubMed
platform of the National Center for Biotechnology Information
(NCBI). The search included peer-reviewed articles published in
English and German from January 2013 to January 2023. We
utilized theMeSH terms “blood platelet disorders” and “platelet
function tests” and the search terms “platelet rich plasma” (38
results) or “wholeblood” (186 results), respectively. In total, 224
references were identified and screened for their relevance and
quality (►Supplementary Fig. S1 [online only]). From these, a
total of 66 articles were considered and supplemented by
guidelines fromvariousmedical associations (i.e., British Society
forHaematology,13British Committee for Standards inHaematol-
ogy,14 Subcommittee on Platelet Physiology of the International

Society on Thrombosis and Hemostasis,15 Permanent Pediatric
Committee of the Society of Thrombosis and Haemostasis Re-
search,16 and AWMF guideline 086–003: diagnosis of platelet
function disorders—thrombocytopathies17).

Additional insights are drawn from the corresponding
author’s practical experience as a consultant and laboratory
medicine specialist focusing on coagulation testing. The
author oversees the diagnosis of inherited and acquired
coagulation disorders in the outpatient service and manages
coagulation testing performed in the central laboratory of
the University Hospital Graz, Medical University Graz
(Austria). Further scientific information was obtained
through personal communicationswithin theworking group
THROMKIDplus during the pediatric GTHmeeting (pedGTH)
held in September 2022 in Igls, Innsbruck (Austria).

How to Diagnose an Inherited Platelet Disorder?
A positive (pediatric) ISTH Bleeding Assessment Tool (BAT)
Score18 alongside plasmatic coagulation tests without path-
ological findings guides to the suspicion toward platelet-
associated diseases, mainly inherited platelet function
disorders (IPFDs).19 To date, �60 types of inherited platelet
disorders (IPDs) have been identified, caused by molecular
defects in �75 different genes.20,21 The severity of these
disorders varies widely, ranging from mild symptom

Fig. 1 Diagnostic pathway to (potentially) identify inherited platelet disorders. The diagnostic pathway outlines the procedure for using various
technical approaches to diagnose and confirm different platelet defects. Classic LTA patterns may range from severe to minor irregular
aggregation curves regardless of the final underlying diagnosis. This variability is depicted in a box entitled “Aggregation curves may range from
severe to minor changes and vice versa” depending on the different agonists. An arrow transitioning from red to orange to green emphasizes
that there are patterns depending on the agonist and these patterns may be independent of maximum amplitude and the area under the curve
(AUC). Acquired platelet function deficits may occur due to various anti-platelet antibodies (e.g., sepsis associated) or due to various synthetic
and herbal drugs (i.e., antiplatelet therapy or dietary supplements). Flow cytometry and genetic analysis (italicized, dashed lines) may be
performed depending on the availability of diagnostic resources. 22qDS, 22q deletion syndrome; ATRUS, amegakaryocytic thrombocytopenia
with radioulnar synostosis; BSS, Bernard-Soulier syndrome; CAMT, congenital amegakaryocytic thrombocytopenia; CBC, complete blood count;
FPD[AML], familial platelet disorder with predisposition to acute myeloid leukemia; GP, glycoprotein; GPS, gray platelet syndrome; IPDs, inherited
platelet disorders; LTA, light transmission aggregometry; MPV, mean platelet volume; P2Y12R, P2Y12 receptor deficiency; PB, peripheral blood;
PT/J, Paris-Trousseau/Jacobsen syndrome; SPD, storage pool disease; TAR, thrombocytopenia with absent radii; TXA2R, thromboxane A2
receptor deficiency; vWD, von Willebrand disease; vWF, von Willebrand factor; WAS, Wiskott-Aldrich syndrome; XLT, X-linked thrombocyto-
penia. Modified from various studies.15,17,28,150
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presentations to severe bleeding disorders such as Glanz-
mann’s thrombasthenia and Bernard-Soulier syndrome.
Defects can occur in platelet receptors, glycoproteins, gran-
ular release or content, transcription factors, and signaling
pathways.22 Due to the complexity of these diseases, the
diagnostic workup employs a broad spectrum of methods
and procedures, the accessibility of which varies across
specialized clinical laboratories.23,24 As advised by the Inter-
national Society on Thrombosis and Haemostasis Subcom-
mittee on Platelet Physiology (ISTH-SSC),18,25 the British
Society for Haematology (BSH),13 the “Gesellschaft für
Thrombose- und Hämostaseforschung” (GTH e.V.),17 and as
performed in various countries (e.g., Northern Europe,26

Italy,27Asia,28Australia29), the diagnosis of platelet disorders
should involve a step-wise approach (►Fig. 1).

Classic Light Transmission Aggregometry
A key method in diagnosing platelet functional disorders is
LTA. This techniquewas independently developed in the1960s
by Born and O’Brien,30–32 and is still considered the gold
standard diagnostic approach formonitoring both physiologic
and pathophysiologic platelet functions. It has proven perfor-
mance characteristics and candetect abnormalities associated
with increased bleeding in a significant proportion of individ-
uals referred for platelet function investigations. The principle

of this method is based on the increase in light transmission
with platelet aggregation. Photometric measurements are
therefore conducted on 200 to 500μL suspensions of platelets
in plasma (platelet-rich plasma [PRP]) or in buffer (washed
platelets or gel-filtered platelets). These measurements are
performed secondary toplatelet aggregation,which is induced
by a variety of relevant activators (►Fig. 2). Typical agonists in
various concentrationsused to stimulateplatelets includeADP,
collagen, epinephrine, ristocetin, thrombin peptides (e.g.,
thrombin receptor activating peptide 6 [TRAP-6]), and arach-
idonic acid, among others. These agonists activate platelets by
binding to specific receptors at the platelet surface, which
leads to a series of downstream events that ultimately
increases the intracytoplasmic concentration of calcium ions
in the platelets. This mobilization of calcium ions prompts the
release of platelet granules, facilitating the local release of
small molecules from the platelets. These molecules attract
additional platelets, leading to interplatelet connections and
aggregation (►Fig. 2). The flexibility of LTA stems from the
ability to use different agonists in various concentrations,
allowing the identification of platelet shape change, platelet
de-aggregation, or the occurrence of secondary wave aggre-
gation.33 Commercially available testing devices and solutions
are listed in ►Table 1. Several studies confirm good or excel-
lent inter-method correlation among the different devices.34

Fig. 2 Principle of light transmission aggregometry and whole blood impedance aggregometry. (A) Top row [technical principle] shows the
cuvette with platelet-rich plasma (PRP) and a stirring bar, light source, and light detection system (not drawn). The difference in milli extinction
(DmE) is measured upon addition of an agonist (indicated by blue pipette tip). (B) Top row [technical principle] with whole blood (WB), a stirring
bar and electrodes to record the change in resistance (Ω%) upon addition of an agonist (indicated by blue pipette tip). Middle row [with
magnification] shows how the platelets react in PRP (A) and WB (B): resting platelets (1) changing conformation and volume (i.e., “shape
change”) after adding agonist (2), which is not recorded in WB; formation of in-stable aggregates (1st wave) (3); formation of stable aggregates
(2nd wave) (4), and sometimes disaggregation (5) in PRP and only in selected devices in WB. Bottom row [recorded tracings] shows the recorded
tracings over time in PRP (A) andWB (B) calculating maximum amplitude (%, curly brackets) based on the D of the transmitted light (�) or the D of
electrical resistance (#) and area under the curve (AUC, dashed light purple lines), respectively. Adding luciferase reagent to PRP or WB allows
recording the release of ATP in an additional channel in selected devices.
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Manually performed LTA is time-consuming, leading to
long turn-around time in daily clinical practice. In addition, it
requires the fresh collection of a relatively large blood
volume, presenting a particular challenge for young patients.
Whole blood sample volume requirements, ranging from 10
to 20mL, exceed what a neonatal patient can safely provide.
Additionally, LTA is technically challenging, as it is influenced
by several pre-analytical and analytical variables. As such,
there is scientific controversy concerning the use of PRP
versus whole blood,35 the impact of anticoagulants (e.g.,
DOACs interfere with thrombin-dependent platelet func-
tion,36 but these effects are often overlooked because exoge-
nous thrombin36 is added in excess in most LTA protocols, as
well as the influence of unfractionated heparin37), centrifu-
gation, transportation,38 hands-on or turnaround time,39

comparability between centers, adjusting platelet count,40,41

standardization of used agonist, and quality control poli-
cies.42–44 Moreover, the lowest reliable platelet count ranges
from 30,000 to 100,000/μL,45,46 which limits the analysis in
patients with thrombocytopenia, a condition often found in
IPD patients. Efforts to address and harmonize these issues
have been made in published guidelines.13,15,17,47

Automated Light Transmission Aggregometry
New coagulation analyzers on the market enable the stan-
dardized performing of automated LTA, with reduced sample
volume requirements (�140 μL PRP per test compared with
200–500 μL in classic LTA), reduced turnaround times, and
without the need for dedicated, experienced personnel.48–51

Despite these advantages, the costs of reagents and consum-
ables for automated LTA may be higher than for classic LTA.
Additionally, interpretation still depends on expert exami-
nation of aggregation tracings from a patient, in comparison
to a healthy control.52

Another automated LTA variant is the high-throughput
96- to 384-well-based platelet function assay, which allows
for a much broader overview of platelet function in signifi-
cantly less time andwith a reduced PRP volume requirement
(50–100 μL per test for 96-well plates, 10 µL per test for 384-
well plates). A large number of simultaneous aggregations
can be run on the same plate, making it easy to generate
concentration–response curves to numerous agonists. How-
ever,micro-plate readers do notmix the platelets in the same
manner as classic aggregometers, and these readers cannot
currently monitor changes in absorbance with mixing.
Therefore, unlike classic LTA, 96-well and 384-well plate
aggregometry cannot be used as a kinetic assay and, in our
own experience, only worked well for functionally incon-
spicuous platelets. Additionally, as the physical forces acting
on platelets are key determinants of their responses to
agonists, the data derived from the two assays are not
interchangeable.53,54

However, it is plausible that such automated assays could
be administered in non-specialized centers, with the results
then sent to a tertiary center for interpretation. The stan-
dardization of these automated, commercially available, and
registered assays could help to alleviate some of the issues
surrounding reproducibility among laboratories worldwide.Ta
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Impedance or Multiple Electrode Aggregometry
The impedance aggregometer was first described in 1980.55

This device measures platelet aggregation by monitoring
changes in electrical impedance (Ω%) in PRP, and its use
has been extended to include whole blood samples.46,56 The
measurement principle involves adding an agonist to stimu-
late platelets, which then aggregate and cover the electrodes,
altering the electrical current conduction between them by
creating an insulating platelet layer, and thus increasing
electrical resistance (►Fig. 2). One main disadvantage of
the first whole blood aggregometers, commercialized as
the Chrono-log (Havertown, PA), was that the two electrodes
used had to be carefully cleaned between analyses, which
was largely considered as impractical for clinical use and
introduced a potential source of error. On the other hand,
disposable gold-plated electrodes have not established
themselves for price reasons. Due to construction differences
between the original whole blood aggregometers and later
further reproduced devices, a decrease in resistance may be
observed only in the former, sparking debates about their
comparability.

Accordingly, the development of new, semi-automated
systems has allowed wide uptake of these instruments in
hematology laboratories, especially for P2Y12 inhibitormon-
itoring.57 While there is some evidence to support the use of
impedance aggregometry for diagnosing severe platelet
function disorders,58–60 this technique has been found to
be less effective than classic LTA in detecting and differenti-
ating mild platelet function disorders.61–63 This is due to its
inability to provide information about platelet shape changes
and reversibility of aggregation. Additionally, as already
described for the other techniques, several pre-analytical
and analytical variables can affect the results provided by the
instrument. These include the time interval between blood
drawing and analysis, the type of anticoagulant used, and the
platelet count.64–66 Consequently, this technique is not cur-
rently recommended as a screening test for diagnosing
platelet function disorders. However, for assessing the resid-
ual effect of antiplatelet therapy prior to surgery, the hyper-
sensitivity of impedance aggregometry exceeds that of
LTA.67

Lumi-Aggregometry
A modification of the LTA and multiple electrode aggregom-
etry is the light transmission lumi-aggregometry (measuring
PRP) and the whole blood impedance lumi-aggregometry,
respectively, which measure platelet delta-granule adeno-
sine triphosphate (ATP) secretion in parallel with platelet
aggregation.68 The assays are performed by adding a lucifer-
in–luciferase reagent to a sample along with an agonist (e.g.,
collagen, thrombin), while stirring the sample at low shear to
promote platelet activation and aggregation. The ATP
released from platelets reacts with the luciferin–luciferase
reagent, resulting in light emission that is usually quantified
by a lumi-aggregometer, relative to an ATP standard. The
advantages of the whole blood impedance lumi-aggregom-
eter is that its assay milieu replicates in vivo platelet activa-

tion conditions, improved reproducibility, and near-patient
testing.69 This combined analysis thus enhances the detec-
tion of platelet disorders affecting dense granule release.
However, this method is also affected by several variables,
including the concentrations of luciferin/luciferase, agonists
and ATP standard, sample volume, incubation time, duration
of measurement, and adjustment of platelet count.52

Alternative Methods

Flow Cytometry
Another popular technique for platelet phenotyping is flow
cytometry.70,71 Unlike LTA, which measures the net result of
multiple activation processes, flow cytometry allows for a
more comprehensive exploration of platelet function. It can
evaluate the presence, absence, or even the functionality of
specific glycoproteins on both resting and activated platelets
at a single cell level.71–73 This renders it highly effective in
diagnosing disorders such as Bernard-Soulier syndrome and
Glanzmann’s thrombasthenia (►Fig. 1), which involve alter-
ations in specific platelet glycoproteins. Furthermore, flow
cytometry is also able to diagnose qualitative or dysfunc-
tional defects of various receptors, including GPIIbIIIa and
GPIbalpha.

Moreover, it is worth noting that, under well-controlled
pre-analytical conditions, flow cytometry presents the
unique ability to detect and quantify microparticles and
platelet aggregates. Microparticles74 are small membrane-
bound vesicles that are released from activated or apoptotic
platelets and are increasingly recognized as important play-
ers in hemostasis and thrombosis. The ability to study these
microparticles provides valuable insights into in vivo platelet
function and pathophysiological processes.75 Similarly, the
detection and analysis of platelet aggregates can provide
clues to platelet activation and aggregation status in vivo,
contributing to a more comprehensive evaluation of platelet
function or dysfunction. These additional observations not
only broaden the diagnostic capabilities of flow cytometry
but can also provide a more nuanced understanding of the
complexities of platelet behavior in health and disease.76

Prior to analysis, single cells in suspension are labeled
with specific fluorochrome-covered antibodies. Platelet
activation can be induced by further addition of one or
more agonists.77 During analysis, the suspended single
cells pass through a flow chamber with one or more laser
beams, which activate the fluorophore at the excitation
wavelength. Consequently, light is scattered from the cells
as they pass through the light source in a fluid suspension
according to the cell size and granularity. Multiple anti-
bodies coupled to different fluorochromes can be used
simultaneously. Also here, the use of microtiter plates has
simplified the method and allowed higher throughput, the
capacity to run more samples, and the ability to use more
agonist concentrations simultaneously. In comparison to
LTA, flow cytometry requires less blood volume and does
not necessarily need PRP preparation.78,79 Additionally,
it is less sensitive to platelet count and therefore even
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platelets from thrombocytopenic patients can be ana-
lyzed.80 However, sample preparation remains labor-in-
tensive and requires skilled personnel. Additionally, it
needs technically advanced instruments and involves
many manual steps. Thus, it is time consuming, especially
when investigating different agonists and concentrations.
Despite these challenges, flow cytometry is a promising
technique for diagnosing well-characterized platelet dis-
orders and may be performed before or complementary to
LTA.81–85

The mepacrine assay is another potentially useful flow
cytometry assay that enables evaluation of the secretion and
incorporation capacities of platelets. It works by quantifying
platelet fluorescence before and after stimulation. However,
like many flow cytometry assays, it is affected by a lack of
standardization, limiting its comparability and reproducibil-
ity across different laboratories. Moreover, while the mepa-
crine assay and lumi-aggregometry both contribute valuable
insights, neither method can definitely distinguish between
storage pool deficiency and primary secretion defects on
their own. Storage pool deficiency is a conditionwhere there
are insufficient granules within the platelets, whereas pri-
mary secretion defects refer to impaired release of these
granules upon platelet activation. The ability to differentiate
between these conditions is crucial in the precise diagnosis
and treatment of dense granule disorders. Therefore, a
combined approach utilizing both the mepacrine assay and
lumi-aggregometry has beenproposed to better characterize
dense granules disorders.86

Platelet Imaging Techniques
Platelet imaging techniques provide valuable information on
platelet structure, function, and abnormalities, aiding in the
diagnosis of various platelet disorders. Traditional methods
include the use of dried blood smears, examined under light
microscopy,which allow for the assessment of platelet count,
size, andmorphology. This simple andwidely used technique
can often give a first hint toward potential disorders, such as
thrombocytopenia, thrombocytosis, or abnormal platelet
morphology.

Fluorescencemicroscopyand other sophisticated imaging
approaches are available in vivo and in vitro for further
differentiation of functional and/or histological time-inde-
pendent analysis of platelets.87–96 Fluorescence microscopy
has advanced our understanding of platelet biology by
providing real-time visualization of intracellular processes.
Fluorescent markers bind to specific platelet components or
molecules, emitting light when excited, thus enabling the
visualization of these components under a fluorescence
microscope. This technique can illustrate various dynamic
processes, such as platelet activation, adhesion, aggregation,
and granule release.97,98

Additionally, confocal fluorescence microscopy, a more
advanced technique, allows for the construction of three-
dimensional images of platelets by taking multiple, thin,
two-dimensional “slices” of the sample, further enhancing
the detail and depth of platelet imaging.99 Similarly, electron
microscopy, including scanning electron microscopy (SEM)

and transmission electron microscopy (TEM), can provide
high-resolution images of platelet ultrastructure.100

These imaging techniques, combined with other diagnos-
tic tools, offer a comprehensive approach to studying plate-
lets, contributing to the diagnosis, understanding, and
management of platelet disorders.

Platelet Function Analyzer—In Vitro Bleeding Time
One widely used point-of-care device represents the Sie-
mens PFA instrument, a time-honored near-patient platelet
function analyzer that employs high-shear citrated whole
blood flow to simulate in vivo platelet aggregation and
adhesion.101–103 This instrument evaluates the ability of
platelets to occlude a microscopic aperture composed of
collagen-ADP (CADP)-or collagen-epinephrine (CEPI)-im-
pregnated membrane mounted at the end of a capillary
tube.104 Platelet function is thus evaluated based on the
closure time (CT, in seconds) needed to obstruct the mem-
brane aperture by aggregated platelets. A prolonged CT may
indicate platelet dysfunction or the presence of antiplatelet
drugs. However, it is important to note that this instrument
lacks sensitivity for certain conditions. For instance, while it
is sensitive enough to detect severe platelet function dis-
orders such as Bernard-Soulier syndrome, Glanzmann’s
thrombasthenia, and most forms of severe von Willebrand
disease, it only demonstrates moderate responsivity toward
milder platelets disorders, including secretory defects and
storage pool disease.104–106

A controversial option to clinically verify bleeding dis-
turbances is the bleeding time based on a standardized
minor incision and timing of the cessation of bleeding.107

Viscoelastic Methods
Viscoelastic methods,108 such as thrombelastography109 (TEG
5000), rotational thromb(o)elastometry (ROTEM devices),
ClotPro, and automated instruments using ultrasound-based
sonorheometry110 (e.g., 6S, Quantra) are technologies in diag-
nosing andmanaging hemorrhagic diatheses potentially asso-
ciatedwith plasmatic and/or platelet disorders and additional
effects based on erythrocytes and leucocytes, respectively,
leading to bleeding or thromboembolic events.111 These tech-
nologies provide a holistic, real-time depiction of the coagula-
tion process, including clot formation, stabilization, and
fibrinolysis, by examining the viscoelastic properties of the
developing clot based on rheometry.112,113

TEG 5000, ROTEM, and ClotPro work on similar principles.
An oscillating pin is placed in a whole blood sample, and the
changes in resistance as theblood clots and subsequently lyses
are recorded.108 This reveals critical information about clot
kinetics, strength, stability, andfibrinolysis, therebyhelping to
identify the share of platelet shortage (potentially associated
with platelet dysfunctions). Special reagents are needed to
identify and monitor antiplatelet therapy (i.e., platelet map-
ping) using thrombelastography or sonorheometry.114

However, all these methods require specific expertise for
interpretation of results and may not detect specific platelet
function abnormalities as effectively as other specialized
platelet function tests in acute complex clinical scenarios.
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Molecular Genetics and New Scientific Approaches
Over the last decade, high-throughput sequencing has revolu-
tionized the genetic diagnosis of human diseases using tar-
getedgene sequencing (TGS),whole exomesequencing (WES),
and whole-genome sequencing (WGS).115,116 The costs of
these technologies have constantly declined, and these tech-
niques are meanwhile widely available in both research and
clinical practice, becoming a sort of gold standard for identify-
ing monogenic diseases, such as in patients with inborn
bleeding diseases.21,117–119 Catalogs of clinical features asso-
ciated with specific genes are available in online databases
such as www.omim.org andwww.genecards.org.13 Additional-
ly, the SSC-GinTH has curated a list of genes associated with
bleeding disorders to create a recommended gene panel for
clinical use,which is available via clinicalgenome.org.120Oneof
the advantages of this method is that the sample required for
testing is generally EDTA whole blood. Some laboratories are
able toaccept as littleas1mLofwholebloodorbuccal swabs to
perform the sequencing, making also pediatric patients suit-
able to testwhenclinically justifiable.However, genetic testing
still suffers from limitations, such as lack of accessibility, high
costs, and sometimes difficulties in assigning pathogenicity to
newly identified variants, in addition to ethical debates sur-
rounding its use.121,122 Moreover, the interpretation of var-
iants of uncertain significance (VUS) remains a challenging
aspect of genetic testing. Without complementary first-line
functional tests, determining the pathogenicity or clinical
relevance of these variants can be complex and uncertain.
These functional assays can provide important phenotypic
data that, when correlated with the genotypic findings, can
help clarify the role of identified genetic variants and inform
clinical management. However, the interpretation of VUS
without such data would rely heavily on available literature,
population databases, and predictive computational models,
which may not always provide conclusive evidence of patho-
genicity. Hence, careful interpretation and communication of
these results is essential to avoid misinterpretation and
misdiagnosis.123–125

Further research approaches are developed and imple-
mented to assess platelet function and properties using
proteomics, lipidomics, and transcriptomics, revealing that
platelets no longer represent a homogeneous cell popula-
tion as previously thought. Instead, they constitute a
heterogeneous, interactive population with distinct sub-
groups that either protect against or contribute to disease
processes.126

Is There Life in the Old Light Transmission
Aggregometry Yet?a

The study of platelet dysfunction is inherently complex due
to the heterogeneity of the underlying pathophysiology.127

Therefore, no single method has yet been identified as the
definitive and universally simple diagnostic for platelet
dysfunctions. While LTA has established itself as gold stan-
dard due to its ability to detect a wide range of inherited,
acquired, and drug-induced platelet defects, it is not without

limitations and concerns, many of which are currently being
addressed through technical improvements and implemen-
tations. Among the ongoing debates is the question of
whether it is more appropriate to use PRP or whole blood
for analysis. PRP, as a non-physiological matrix, has been
criticized for its inability to reflect interactions with the
endothelium or incorporate any sheer stress, both of which
are known to be significant in vivo processes.106 In contrast,
whole blood analysis simulates platelet aggregation under
more physiological conditions, as contributions from other
blood components are included. In addition, whole blood
methods use a small amount of blood in which all subpo-
pulations of platelets are present, allowing rapid analysis of
platelet function without the need for prior activation or
manipulation of the sample. However, the different ana-
lyzers often lack flexibility, have limited availability, and
employ different technologies, often yielding disparate inter-
pretations. Additionally, their performance in diagnosing
constitutional platelet pathologies is poorly documented.
Therefore, further research is urgently needed to evaluate
their potential role in diagnosing IPDs.

Until now, results obtained by LTA should be supplemented
by other analytical (e.g., flow cytometry analysis for identifi-
cation and quantification of specific platelet components,
assessmentofplatelet secretion, andspecific assays forplatelet
compounds) or genetic tests, depending on availability.

Flow cytometry has the advantage that of requiring only
small volumes of blood, a particularly important factor when
evaluating pediatric patients or those with high hematocrit
and low proportion of plasma.128 It also has potential appli-
cations in thrombocytopenic patients.34 Unlike LTA, which
measures overall platelet aggregation and is highly sensitive to
nonsteroidal anti-inflammatory drugs (NSAIDs) due to their
inhibitory effect on platelet function,129 flow cytometry may
be less affected by NSAIDs. This is especially the case when
ADP, cross-linked collagen-related peptide (CRP-XL), and
TRAP-6 are used as agonists. However, the extent to which
NSAIDs impact flow cytometry assays can depend on several
factors, including the specific parameters of the assay and
individual patient characteristics. Therefore, although there
are scenarios whereflow cytometrymay appear less sensitive
to NSAIDs than LTA, the impact of these drugs can vary and
should be considered when interpreting results from both
methods.130 It is also worth noting that flow cytometry is not
able to study aspects and signaling induced by contacts
between platelets and platelets. Moreover, several of the
proposedprotocols forflowcytometry have yet to bevalidated
bystudies and lackstandardization.131Therefore, it is essential
to ensure thatNSAIDsweredefinitely stoppedbefore perform-
ing diagnostic tests for IPDs.

Since the implementation of next generation sequencing
(NGS) in 2009, a rapid analysis of genes previously implicated
in IPDs or those known to have a key role in platelets has
become available.132,133 This also extends to novel genes not
previously implicated in platelet dysfunction. However, de-
spite significant advances in our understanding of the mo-
lecular basics of IPDs, molecular genetic approaches still do
not fulfill all the requirements necessary to elucidate thea There is life in the old dog yet—Totgesagte leben länger
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underlying genetic variance in every pathological case. A
considerable proportion of symptomatic patients cannot be
diagnosed and, in some instances, the pathogenic mecha-
nisms of certain variants cannot be confirmed or correctly
interpreted at present.134–136 Consequently, a precise de-
scription of the functional phenotype using the methods
mentioned in this article represents a crucial prerequisite for
establishing a valid phenotype–genotype correlation.

Glanzmann’s thrombasthenia accounts here for a promi-
nent example: This IPD is characterized by a normal platelet
count, prolonged bleeding time, abnormal clot retraction, and
defective platelet aggregation in response to multiple physio-
logic agonists. The defect may be caused by quantitative or
qualitative abnormalities of the platelet integrin receptor,
αIIbβ3, the primary player in platelet function. While Glanz-
mann’s thrombasthenia shows a straightforward pattern of
aggregation using LTA, describing the pathology at the genetic
molecular level reveals a wide variety of polymor-
phisms,137–139 leading to the observed pathology.42

To exemplify, 45 unrelated patients who were unequivo-
cally diagnosed with Glanzmann’s thrombasthenia based on
their phenotype were subjected for the genetic analysis in
αIIb and β3 genes. Both of these proteins form a heterodimer
complex (αIIbβ3) that undergoes final processing and is then
transported to the platelet surface. In nine of these patients
(20%), no causative gene alterations were identified in both
the ITGA2B and ITGB3 genes, respectively.140

This suggests that any defect in the regulatory proteins
involved in integrin activation or its binding sites on αIIbβ3,
as well as any defect in regulatory elements affecting the
transcription or post-translational modifications of αIIb and
β3, could potentially affect the integrin activation process,
leading to the condition of Glanzmann’s thrombasthenia.141

Additionally, there are also other pathologies, as for
example the sticky platelet syndrome,142–144 which is con-
sidered as an autosomal dominant disorder associated with
arterial and venous thromboembolic events where the pre-
cise underlying genetic defects remain unidentified,145–147

or where certain subpopulations of pro-coagulant platelets
may potentially be missing.148,149

Taken together, neither LTA nor genetic testing alone can
provide a comprehensive diagnosis for patients with IPDs.
The combination of functional and genetic testing is the key
for accurate phenotype–genotype characterizations. From
our point of view, there are two potential future scenarios for
the utilization of LTA in diagnosing IPDs:

1. Improvements in automation, standardization, and
usability are likely to render LTA available outside of
specialized centers in the next few years. This is particu-
larly important since whole blood drawn for LTA platelet
function testing expires in 4hours or less. This short
sample viability requires that a specialized laboratory
be within 2hours away to ensure that sufficient time
remains to perform the analysis. However, many clinics
and hospitals are not fortunate to be in geographic
proximity to a specialized coagulation laboratory that
performs this test. When the issues explicated in this

article will be properly addressed and solved by future
inventions and strict guidelines, LTA will very likely
remain the first-line functional platelet test and will
defend its position as gold standard.

2. Given that LTA still has many limitations and results remain
difficult to interpret in a significant proportion of cases, its
place in the workflow of diagnosing IPDs may be revised. As
further research is done on platelet disorders and on the
identification of the causal variants associated with the
disease, NGSmay soon be fully integrated into the diagnostic
setting. The sample required for genetic testing is generally
EDTA whole blood and is very stable when shipped across
countries. From its present use as a first-line screening test,
LTA could move on to become a second-line functional test
for confirmation of genetic variations identified by high-
throughput sequencing techniques.

Conclusions

Light transmission aggregometry has been the gold standard
method for detecting platelet defects and assessing platelet
function for many years. However, with technological
advancements and the availability of alternative tests, the
clinical utility of LTA has evolved andmay vary depending on
the particular clinical scenarios and laboratory resources.

In recent years, other platelet function tests, such as flow
cytometry, impedance aggregometry, and PFA, have emerged
as potential alternatives to classic LTA. These newer methods
offer advantages such as a faster turnaround time, lower
variability, and user-friendliness. Yet, they also have their
own limitations and may not be universally applicable across
all clinical settings. Consequently, no alternate approach has
yet emerged to effectively replace LTA in diagnosing IPDs.

The decision to use LTA or other platelet function tests
depends on a variety of factors, including the clinical context,
availability of resources, and expertise of the laboratory. In
some cases, LTAmay remain the first-line test for identifying
platelet defects, particularly in specialized laboratories with
expertise in performing and interpreting the results. In other
cases, alternative tests might be preferred due to their
convenience, speed, and reproducibility.

Therefore, it is important to consult with a qualified
healthcare professional or a clinical laboratory expert to
determine the most appropriate platelet function testing
method for a specific patient or clinical scenario, as it may
vary depending on the individual circumstances.
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