Cervical myelitis: a practical approach to its differential diagnosis on MR imaging
Zervikale Myelitis: praktische differentialdiagnostische Aspekte im MRT

Authors
Stefan Weidauer, Elke Hattingen, Christophe Théo Arendt

Affiliations
Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany

Key words
spinal cord, myelitis, myelopathy, magnetic resonance imaging, differential diagnosis

Results and Conclusion
Cerebrospinal fluid analysis, blood culture tests, and autoimmune antibody testing are crucial for the correct interpretation of imaging findings. The combination of neuroradiological features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.

Key Points:
▪ The differentiation of medullary lesion patterns, i.e., longitudinal extensive transverse, short ovoid and peripheral, polio-like, and granulomatous nodular, facilitates the diagnosis of myelitis.
▪ Discrimination of acute complete and acute partial transverse myelitis makes it possible to categorize different entities, with the latter frequently being the overture of multiple sclerosis (MS).
▪ Neuromyelitis optica spectrum disorders (NMOSD) may start as short transverse myelitis and should not be mistaken for MS.
▪ The combination of imaging features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.
▪ Additional brain imaging is mandatory in suspected demyelinating, systemic autoimmune, infectious, paraneoplastic, and metabolic diseases.

ZUSAMMENFASSUNG
Hintergrund Die Differentialdiagnose der nicht durch eine Kompression bedingten zervikalen Myelopathie umfasst ein breites Spektrum von inflammatorischen, infektiösen, vaskulären, neoplastischen, neurodegenerativen, und metabolischen Ätiologien. Obwohl der Grad der Symptomatik und klinische Verlauf für die Diagnose von wissenschaftlichen Erkrankungen wichtig sind, ist die Unterscheidung von verschiedenen Entitäten mit Hilfe von zerebrospinalen Flüssigkeitsanalysen, Blutkulturen und Autoimmunantikörpern möglich.

Zusammenfassung
Die Differentialdiagnose der nicht durch eine Kompression bedingten zervikalen Myelopathie umfasst ein breites Spektrum von inflammatorischen, infektiösen, vaskulären, neoplastischen, neurodegenerativen, und metabolischen Ätiologien. Obwohl der Grad der Symptomatik und klinische Verlauf für die Diagnose von wissenschaftlichen Erkrankungen wichtig sind, ist die Unterscheidung von verschiedenen Entitäten mit Hilfe von zerebrospinalen Flüssigkeitsanalysen, Blutkulturen und Autoimmunantikörpern möglich.

Methoden
Die Unterscheidung von akut kompletter und akut partieller transversaler Myelitis können verschiedene Entitäten differenziert werden. Letztere werden in der Regel unter dem Verdacht einer Multiplen Sklerose behandelt. Charakteristische medulläre Läsionsmuster sind a) die longitudinal extensive transversale Myelitis, b) kurzstreckige ovale und peripher lokalisierte, c) polio-ähnliche Anamnese und d) granulomatöse noduläre anmutende Kontrastmittelanreicherungen.
Introduction

Differential diagnosis of non-compressive cervical myelopathy includes immune-mediated inflammatory, infectious, parainfectious, vascular, neoplastic, neurodegenerative, and metabolic etiologies [1–4] (Tab. 1). Key feature questions to reach the diagnosis in a clinical approach encompass the speed of symptom onset, e.g., acute, subacute, or chronic, and the course of the disease, i.e., monophasic, relapsing, or chronic progressive [5–7]. In addition, cerebrospinal fluid (CSF) analysis, serum inflammatory markers, infection serology and knowledge of preexisting conditions are necessary [1, 2, 4, 6].

Following the diagnostic criteria of the Transverse Myelitis Consortium Working Group, the nadir of neurologic symptoms due to acute transverse myelitis (ATM) develops within 4 hours to 21 days [8]. Evidence of inflammation is demonstrated by CSF pleocytosis or elevated immunoglobulin G (IgG) index or pathological enhancement on T1-weighted images (WI) after contrast medium administration. Distinction of acute complete transverse myelitis (ACTM) and acute partial transverse myelitis (APTM) makes it possible to categorize different entities [2, 9, 10]. In ACTM, the cord cross-section of the spinal cord is extensively or even completely affected [9]. Consequently, pronounced neurologic deficits such as tetraparesis, sensory deficits, and dysfunction of the bladder and bowel are present [8–10]. Unlike ACTM, APTM shows less extensive and mainly peripheral medullary involvement and presents with mild and incomplete neurologic symptoms such as dissociated sensory loss (Tab. 2) [8–10]. Chronic inflammatory myelopathies are infrequent and progressive over several weeks or even months, e.g., primary progressive multiple sclerosis (PPMS) or paraneoplastic myelopathy [11–16].

Although symptom onset and clinical course seem to be characteristic for certain neurological diseases, additional MR imaging plays a pivotal role in narrowing down or even confirming diagnostic considerations [1, 3, 6, 16, 17]. Analysis of sagittal lesion extent along with the cross-sectional lesion pattern of the spinal cord such as involvement of grey and/or white matter, restriction to specific anatomical structures, symmetry of signal abnormal-

| Tab. 1 Etiology of non-traumatic cervical myelopathy. |
|---------------------------------|---------------------------------|-----------------|
| **Extradural Compression** | **Pathology** | **Disease** |
| Neoplasm/tumor | Vertebral metastasis |
| Infection | Bone neoplasm |
| Spinal canal stenosis | Spondylodiscitis |
| Medial disc herniation | Epididymal abscess |
| Bleeding | Epidural hematoma |
| Subdural hematoma |
Intradural vascular	Venous congestion, infarct	Dural AV – fistula
Spinal AV	Spinal	
Venous congestion, bleeding	Cerebral (Cognard grade V)	
Superficial siderosis	Perimedullary ("true") AVM	
Compression	Neoplasm	Meningioma, other
Intramедullary vascular	Bleeding	AVM
AVM		
Cavernoma		
Venous congestion, infarct	AVM	
Infarct	ASA infarct, SCA infarct, other	
Tab. 1 (Continuation)

<table>
<thead>
<tr>
<th>Inflammatory/immuno-associated</th>
<th>Demyelination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-limiting</td>
<td>MS</td>
</tr>
<tr>
<td>Adjuvant/environmental</td>
<td>ADEM</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>NMOSD</td>
</tr>
<tr>
<td>Systemic autoimmune disease (SAD)</td>
<td>MOGAD</td>
</tr>
<tr>
<td>Hereditary/idiopathic disease</td>
<td>GFAP-assoc.</td>
</tr>
<tr>
<td>Adjuvant/environmental</td>
<td>Other</td>
</tr>
<tr>
<td>Neurosarcodeiosis</td>
<td></td>
</tr>
<tr>
<td>Postvaccination</td>
<td></td>
</tr>
<tr>
<td>Graft-versus-host disease</td>
<td></td>
</tr>
<tr>
<td>Parainfectious</td>
<td>Bacterial, viral, parasitic, fungal (agent often not identified)</td>
</tr>
<tr>
<td>Inflammatory/not autoimmune-associated</td>
<td>Infectious acute myelopathy</td>
</tr>
<tr>
<td>Inflammatory/not autoimmune-associated</td>
<td>Infectious chronic myelopathy</td>
</tr>
<tr>
<td>Metabolic diseases</td>
<td>SCDSC</td>
</tr>
<tr>
<td>SMA, ALS, Hirayama diseases</td>
<td></td>
</tr>
<tr>
<td>Hereditary/degenerative diseases</td>
<td>Neurogenetic disease</td>
</tr>
<tr>
<td>Spinal tract degeneration</td>
<td>Friedreich’s ataxia, (adult) PCBD, LBSL, other</td>
</tr>
<tr>
<td>Paraneoplastic</td>
<td></td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Ependymoma, glioma, other</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Neoplastic meningiosis</td>
</tr>
<tr>
<td>Syringomyelia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(non-) communicating, e.g., Arnold-Chiari malformation</td>
</tr>
</tbody>
</table>

Longitudinal extensive transverse myelitis (LETM)

LETM, which is typically associated with ACTM, shows sagittal extension over three or more contiguous vertebral body segments and was defined by Wingerchuk et al. [22] in 2007 in order to differentiate spinal cord involvement in neuromyelitis optica (NMO) from MS [3, 16, 22–24]. Besides immune-mediated demyelinating diseases such as neuromyelitis optica spectrum disorders (NMOSD), myelin oligodendrocyte-glycoprotein (MOG-IgG) associated disease (MOGAD) [25–31], autoimmune spinal cord lesions should involve at least 70 % of the grey matter and contrast enhancement should be present [Fig. 1] [3, 17, 23, 57, 58]. Although no specific enhancement pattern has been defined, ring-like enhancement on axial images favors the diagnosis of NMOSD [3, 6, 59]. Hypointense signal changes on T1 WI, swelling and brighter spotty lesions (BSL) are additional imaging findings [23, 42, 57, 58]. Especially on axial T2 WI, a BSL is a circumscribed extraordinarily hypointense, i.e., brighter signal change than usual T2 hyperintense spinal cord lesions. To discri-
terminate NMOSD from MS, BSL are a helpful imaging feature [42, 60–62]. Hypointense T1 signal changes might be the correlate of necrotizing demyelination on histological examination, reflecting the frequently complicated course in NMOSD with incomplete remission and persistent neurological deficits [17, 63].

However, in 25 out of 176 patients (~14 %) with myelitis and AQP4-ab, the longitudinal involvement was less than three vertebral body segments, i.e., short transverse myelitis (STM) (▶Fig. 1e–h) [64]. NMOSD-related STM shows a central lesion pattern, hypointense signal changes on T2WI, and absence of oligoclonal bands (OCB) in CSF as compared with more peripherally located lesions in STM without AQP4-ab, e.g., in relapsing remitting MS (RRMS) [10, 17, 64–66]. After short segment involvement, however, follow-up scans over 5.4 years revealed relapses with the presence of LETM in 92 % of cases [64]. While immune-modulating therapies are recommended immediately in CIS or MS, they are potentially damaging in NMOSD [13, 64, 65]. Therefore, knowledge of this neuroradiological overture in NMOSD is crucial.

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD)

MOGAD is an autoimmune-mediated demyelinating disease positive for IgG against MOG in 40 % of AQP4-Ab-negative patients with initial suspicion of NMOSD [25–27, 67, 68]. There is strict perivenous demyelination, patients are often younger, and the disease course usually is monophasic and has a more favorable outcome [25]. Spinal cord involvement in MOGAD often manifests as LETM with predominant central location (H-sign) on T2WI (▶Fig. 1i–l). Postcontrast (pc) T1WI may disclose slight or even no parenchymal contrast enhancement, whereas leptomeningeal enhancement is more frequent [3, 17, 25, 26]. Comparison of lesion evolution across MOGAD, AQP4-NMOSD, and MS shows that clinically leading MS-associated spinal lesions are preferentially located in the cervical region and to a lesser extent in the thoracic region of the spine [3, 17]. By contrast, thoracic spinal cord involvement is more common in AQP4-NMOSD and MOGAD. In MOGAD, in particular, the conus medullaris is also frequently involved [3, 25]. In a recent study by Secchi E et al. [17], it was shown that clinical attacks occurred in 58 % of patients
with MOGAD as part of an ADEM or with MRI evidence of multifocal central nervous system (CNS) lesions without encephalopathy. Myelitis with or without concomitant ON occurred in 32%. Demyelinating spinal T2 lesions in MOGAD are more extensive compared with MS and are often initially associated with more severe deficits [3, 17, 29, 30]. However, MRI follow-up studies show complete lesion regression accompanied by an excellent clinical outcome in 79% of cases, whereas regression of MS-associated lesions is often incomplete [17, 29, 30, 69]. AQP4–NMOSD-related LETM is also initially associated with severe neurological deficits, but compared to MOGAD, often shows incomplete, approximately 60–80% lesion reduction on follow-up [17, 70]. Frequent circumscribed spinal atrophy and varying degrees of neurologic residuals are likely consequences [17, 29, 63]. As opposed to MS, ON in MOGAD typically shows additional perineural enhancement on pc-T1WI besides more extensive one- or even both-sided involvement of the optic nerve [13, 57, 65].

Autoimmune glial fibrillary acidic protein (GFAP) IgG astrocytopathy

Autoimmune GFAP astrocytopathy is a corticosteroid-responsive inflammatory disorder with meningoencephalitis, with or without myelitis, associated with GFAP-IgG ab [32–36]. Clinical manifestations are heterogeneous, often with acute or subacute onset accompanied by fever, headache, encephalopathy, ataxia, abnormal vision, psychosis, autonomic dysfunction and spinal cord symptoms [33, 36]. Due to the presence of other autoimmune antibodies, diagnosis is sometimes challenging. In about 22% of cases, a possibly causative malignancy, most often an ovarian teratoma, is present [36]. However, concomitant primary CNS lymphoma should also be considered [36, 71]. CSF analysis indicates pleocytosis, elevated protein content with OCB in 50% of cases [26, 67]. Cranial MRI commonly shows lesions in the subcortical white matter, the basal ganglia, hypothalamus, brainstem, and cerebellum. In about 66% of patients, contrast enhancement with a characteristic linear radial perivascular
pattern perpendicular to the ventricles is seen [36]. Involvement of the spinal cord varies between 22 % and 68 % [3, 17, 31], occurs in about 11 % alone [3], and is often associated with a subacute course. MRI usually shows LETM (> 80 %) on T2 WI [17, 28] accompanied by only slight swelling with punctuate (50 %) or leptomeningeal (40 %) enhancement on pc T1 WI and possible involvement of the central canal (30 %) (▶ Fig. 1m–p) [17, 36, 71, 72].

Neurosarcoidosis (NS)

CNS involvement in sarcoidosis occurs in approx. 5 % of the cases and may include the brain parenchyma, meninges, cranial nerves, pituitary gland, spinal cord, and spinal nerves [73]. In NS-associated myelopathy, four MRI phenotypes can be differentiated: (a) LETM as the most frequent lesion pattern, often together with crescent-shaped dorsal subpial contrast enhancement (trident sign), (b) spinal meningitis/radiculitis with leptomeningeal and radicular pattern of contrast enhancement, occasionally nodular, (c) short tumefactive transverse myelitis, and (d) anterior myelitis associated with disc herniation (▶ Fig. 2) [1–3, 6, 73, 74]. Myelopathy in NS may be challenging due to an overlap with other inflammatory spinal cord disorders, e.g., NMOSD [58]. However, subpial contrast enhancement spanning at least two vertebral body segments and persisting over months despite high-dosage corticosteroid treatment is suggestive for NS [3, 5, 58]. Especially in short tumefactive transverse myelitis, the granuloma may exhibit hypointense signal changes on T2WI with distinct enhancement on pc-T1WI and may mimic a spinal cord tumor [2, 3, 73]. Differential diagnoses of the meningoradicular MRI phenotype include bacterial infections, e.g., tuberculosis and syphilis, and parasitic infections, e.g., neurotoxocariasis, as well as meningeal carcinomatosis [1–4, 6, 16]. Moreover, cross-sectional pancake-like contrast enhancement caudal to the maximum spinal stenosis in spondylotic myelopathy may also be present in NS-associated myelitis [75].

Systemic autoimmune diseases (SAD)

In 16.5 % of cases, LETM is the start of CNS involvement in SAD [76]. Two subtypes of SLE-associated myelitis are attributed to the preferential involvement of grey and white matter, respectively [76]. (a) Predominant inclusion of grey matter typically presents with a fulminant course within 6 hours together with severe and occasionally persisting neurological deficits. Histological studies disclosed perivascular inflammation with necrosis and infarction, possibly with restricted diffusion on DWI [2, 3]. (b) Predominant inclusion of white matter causes subacute and frequently mild para- or tetraparesis and sensory deficits accompanied by bladder and bowel dysfunction. Altogether, AQP4-ab
was positive in 57% of cases and 55% had a history of ON, highlighting the fact that the clinical symptoms of NMOSD and SAD overlap [2, 3, 23, 39]. However, it is noteworthy that repetitive spine MRI may be negative despite CSF evidence of inflammation, i.e., pleocytosis and raised protein level [18]. In such cases, neurological examination typically demonstrates the involvement of specific spinal cord tracts [18]. In addition, ▶ Tab. 1 summarizes other immunological entities causing myelitis.

Infectious and parainfectious diseases

Up to 40% of pediatric patients suffering from LETM show serological and clinical evidence of previous viral infection, whereas the rate of parainfectious etiology varies between 6% and 45% in adults [4, 10, 37]. Differentiation between parainfectious and infectious myelitis is challenging, and viral agents are more common than bacterial, fungal, or parasitic pathogens. Despite extensive laboratory testing, however, the causative agents often remain unidentified [28, 38, 41]. Viral infections are more frequently accompanied by an antigen-derived excessive immune reaction in the spinal cord due to molecular mimicry [37, 38]. Microbial superantigen-mediated infections can lead to a fulminant course within several hours [6, 38, 41]. Therefore, knowledge of the individual immunological state, current environment, and recent travel abroad is essential. A rare complication of bacterial meningitis is rapid progressive LETM due to spinal cord invasion of pathogens via venous pathways [77]. Other dramatic consequences are infarctions, hemorrhage, and abscess formation. Although not specific, extensive contrast enhancement of nerve roots is common in infectious meningoencephalitis (▶ Fig. 3) [1, 2, 4]. However, this pattern of contrast medium uptake is also seen in Guillain-Barré syndrome, meningitis carcinomatosa, and infarction of the conus medullaris, i.e., positive anterior cauda equine sign [78]. Neuroborreliosis is a meningoradiculitis with only occasionally detectable spinal cord swelling and possible slight T2 hyperintense signal changes that do not correspond to myelitis [1, 10]. A likely explanation may be impaired venous outflow and spinal cord edema. A detailed description of the wide range of viral-, bacterial-, fungal- and parasite-induced types of ATM goes beyond the scope of this review and is reported elsewhere [1, 2, 4, 6, 79].

▶ Fig. 2 MRI phenotypes in sarcoidosis-associated myelopathy. a–d: Longitudinal extensive transverse myelitis (LETM) spanning from C3–Th 1/2 with hyperintense dorsal and central cord involvement on T2-weighted images (WI) (a, c: arrow), pronounced dorsal subpial contrast enhancement (b, d: arrow) and trident sign on axial T1 WI after contrast medium administration (d: arrowhead). e–h: Nodular leptomeningeal (f, h: arrow) and radicular (h: arrowhead) enhancement on post-contrast (pc) T1 WI; LETM showing inhomogeneous hyperintense signal changes on T2 WI with grey matter involvement (e, g: arrow). i–l: LETM spanning from C2–Th 2 (k, l: arrows) with anterior and posterior linear subpial (f, arrows) and intramedullary pancake-like (l: arrows) contrast enhancement in close proximity to degenerative cervical spine changes (i: arrowhead).
Short segment ovoid and peripherally located partial transverse myelitis

Typically, these lesions span less than two vertebral body segments and are predominately located in the white matter at the circumference with broad contact to the pial surface and subarachnoid space [1–3, 17, 65, 66, 80]. This manifestation of APTM is the prototype of spinal cord involvement in MS [65]. CSF analysis frequently shows pleocytosis and OCB. Acute lesions may show slight swelling on T2WI and eccentric or homogeneous enhancement on pc-T1WI (▶ Fig. 4a, b) [65, 81]. This dorsolateral circumference of the spinal cord at the cervical level is preferentially affected as a likely consequence of increased biomechanical stress due to its attachment by the denticulate ligaments and the notable mobility of the cervical spine [82]. Although the lesions are usually smaller than in myelitis caused by NMOSD, MOGAD, or GFAP, and clinical symptoms corresponding to APTM are less pronounced, they usually show only a moderate size reduction of 30–70% on follow-up imaging [17]. In order to confirm the diagnosis of MS, additional brain MRI is mandatory in order to demonstrate dissemination in space according to the McDonald criteria [65, 66, 83].

Polio-like lesions

Besides the nearly eradicated poliovirus, other picornaviruses and some flaviviruses may cause grey matter myelitis with a frequently symmetrical lesion pattern in the anterior horns (“snake eyes”, “owl eyes”) causing acute flaccid paralysis [3, 10, 84]. In addition, Listeria monocytogenes may invade the CNS via nerve roots and has a similar predilection for grey matter [10]. These lesions span longitudinally over several vertebral body segments. In the acute stage, enhancement of the anterior nerve roots on pc T1WI may occur [84]. In addition, the start of spinal NMOSD may show T2 hyperintense signal changes in the anterior horns [24, 84, 85]. Due to the increased vulnerability of the motor neurons in the anterior horns with respect to oxygen reduction, especially hemo dynamic infarctions with selective parenchymal necrosis may exhibit the same lesion pattern (▶ Fig. 5) [19, 86]. Restricted diffusion may be detectable in the acute stage followed by contrast enhancement on pc T1WI in the subacute phase [78]. As a watershed zone of the spinal cord is located in the mid-cervical region [87–89], the motor neurons of nerve roots C3-C6 are usually affected with consecutive “man-in-the-barrel syndrome” on neurological examination [90, 91]. However, neurodegenera-
The document discusses congenital diseases involving the second (lower) motor neurons, e.g., spinal muscular atrophy, amyotrophic lateral sclerosis, and atopic myelitis with focal amyotrophy and raised IgE levels (Hopkins syndrome) may also cause a similar lesion pattern on T2WI (Fig. 6) [85, 92, 93].

Differential diagnosis of non-inflammatory myelopathies

After exclusion of extradural spinal cord compression, especially from degenerative spondylosis or metastatic vertebral tumors, the heterogeneous etiopathogenesis of non-inflammatory myelopathies includes vascular, metabolic, neoplastic and neurodegenerative diseases (Tab. 1) (Fig. 6–8) [1–4, 16]. The longitudinal extent on sagittal T2WI with variable hyperintense signal changes often spans several vertebral body segments [1–4, 6]. Involvement of specific spinal cord tracts, the presence of perimedullary T2 flow voids, or evidence of restricted diffusion may narrow down the differential diagnosis [1–4, 6].

Subacute combined degeneration of the spinal cord (SCDSC) depicts the alteration of the dorsal and/or lateral columns that are most commonly due to vitamin B12 deficiency (funicular myelosis) [1–3, 5, 6, 16, 94]. Other infrequent causes are deficiencies of vitamin E or copper, and exposure to nitrous oxide (N2O) leading to vitamin B12 deficiency [94]. However, neurodegenerative diseases, e.g., Friedreich’s ataxia and adult polyglycosan body disease (PGBD), paraneoplastic syndromes, and vacuolar myelopathy in people living with human immunodeficiency virus may mimic SCDSC (Tab. 1, Fig. 6) [12, 14, 44, 95]. Moreover, coronavirus disease 2019 with concomitant myelopathy may also predominantly involve dorsal and lateral spinal tracts [96, 97].
Vascular spinal cord diseases

Perimedullary T2 flow voids due to enlarged veins are a diagnostic clue for the identification of spinal arteriovenous malformations (AVM) and dural AV fistulas (DAVF) [1, 2, 98–100]. Besides rarely “true” intramedullary AVMs (Fig. 8a–e), well-treatable DAVFs also cause volume and pressure overload of the venous drainage system resulting in so-called congestive myelopathy [99, 101]. MRI shows T2 hyperintense signal changes, possible spinal cord swelling, and inhomogeneous patchy enhancement on pc T1WI [99, 101]. However, intracranial DAVFs with drainage into the perimedullary veins of the cervical spine, i.e., classified as Cognard type V, should be considered (Fig. 8f–i) [100, 102]. Whereas the initial clinical course usually presents with slowly progressive or fluctuating symptoms, mild neurological deficits can be misleading as sudden deterioration due to concomitant ischemic aggravations may occur [5, 98, 99]. Hematomyelia and spinal subarachnoid hemorrhage may happen as a complication of “true” spinal AVM [98].

The clinical start of the anterior spinal artery syndrome (Fig. 5) is accompanied by bilateral severe radiating pain in the shoulders and arms [6, 78]. The median time to reach the nadir of neurologic symptoms in spinal cord infarcts is 1 hour, but the mean is approximately 8 hours [6, 78, 103]. In a similar way, fulminant myelitis can cause a maximum of neurological deficits within 4 hours and therefore may mimic spinal ischemia [6, 8]. Furthermore, only 20% of patients suffering from spinal cord infarction show intramedullary signal conversion on T2 WI within the first 15 hours, without taking DWI into account [20]. However, evidence of intramedullary diffusion restriction is not specific for spinal ischemia because it also occurs in fulminant myelitis, particularly at the start of the inflammatory process [2, 3, 21]. However, detailed description of the different types of spinal cord infarcts and their heterogeneous etiologies is beyond the scope of this review and reference is made to the relevant literature.

Fig. 9 presents an algorithm with different spinal cord lesion types, additional MRI features, medical history, and the most likely differential diagnosis.

In conclusion, differential diagnosis of non-compressive cervical myelopathy encompasses a broad spectrum of inflammatory, infectious, vascular, neoplastic, neurodegenerative, and metabolic etiologies. The combination of imaging features, clinical course, neurological and laboratory findings, and the knowledge of preexisting conditions improves diagnostic accuracy.

In myelitis, the differentiation of ACTM and APTM makes it possible to distinguish certain entities, the latter frequently being the start of MS. Characteristic lesion patterns in spinal MRI include LETM, short-range ovoid and peripheral lesions, polio-like lesions, and granulomatous nodular enhancement prototypes. However, CSF analysis, blood culture tests, and AQP4-, MOG- and GFAP-ab testing are pivotal for proper interpretation of imaging findings.
Especially in autoimmune-associated myelitis, additional cerebral imaging is mandatory. Perimedullary flow voids are a key feature of spinal AVM, and more frequently of DAVF, which can cause varying degrees of venous congestion.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Fig. 6 Tract/medullary anatomical structures-associated myelopathy. **a, b:** Subacute combined degeneration of the spinal cord (SCDSC) due to vitamin B12 deficiency showing hyperintense signal changes of the dorsal columns (arrow) on T2-weighted images (WI). **c–f:** Paraneoplastic myelopathy in a 55-year-old man suffering from progressive ataxic gait and neuropathic pain. Hyperintense bilateral (**l–r**) signal changes of the anterolateral tracts in the lower cervical and thoracic cord (**c, e:** arrows) with slight enhancement on post-contrast T1 WI (**d, f:** arrows). **g, h:** Sagittal (**g**) and axial (**b**) T2 WI showing distinct cord atrophy and hyperintense signal changes in the dorsal (**g, h:** arrow) and anterolateral columns (**h:** arrowhead) due to adult polyglucosan body disease (PGBD). **i, j:** Spinal muscle atrophy (SMA) causing hyperintense signal changes in the anterior horns on T2 WI (**i, j:** arrow); note “snake eye” configuration (**j**).
Fig. 7 Intramedullary tumors and syringomyelia. a–d: Biopsy-proven B-cell lymphoma with longitudinal extensive T2 hyperintense lesion involving the whole cross-section (a, c: arrow), cord swelling, and diffuse partially homogeneous enhancement on T1-weighted images (WI) after application of contrast medium (b, d: arrows). e–h: Ependymoma with an upper solid part (e, g: arrow) and pronounced inhomogeneous enhancement on post-contrast T1 WI (f, h: arrow); additional tumor cyst (e, f: arrowhead) with basal signal loss due to hemosiderin deposits (e, f: black arrow). i–l: Noncommunicating syrinx (i–l: arrow) due to Arnold Chiari malformation type I with herniation of the cerebellar tonsils (i, j: arrowhead) without contrast enhancement (j, l). Note pulsation-related T2 signal inhomogeneities in the syrinx (l, k) and shifting of the central canal (k, l: arrowhead).

Picca A, Berzero G, Bihan K et al. Longitudinally extensive myelitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 2021; 8: e967

Fig. 8 a–d: Intramedullary arterio-venous malformation (AVM). Sagittal T2-weighted images (WI) (a) showing hyperintense myelopathy with slight cord swelling (a, arrow), nodular contrast enhancement on post-contrast (pc) T1 WI (b, d, arrow) and eccentric inhomogeneous signal changes on axial T2 WI (c, arrow). e: Digital subtraction angiography (DSA) of the left vertebral artery disclosed AVM with venous aneurysm (arrowhead) and prominent radiculomedullar branch C5 left (arrow); black arrowhead: anterior spinal artery. f–i: Intracranial dural AV fistula with additional drainage into dilated medullary veins (Cognard type V) (f–i, arrows) causing slight myelopathy (f, h: arrowhead).
Fig. 9 Algorithm of different medullary lesion types, additional MRI features, medical history, and probable differential diagnosis. Abbreviations: AB: Antibody; ADC: Apparent diffusion coefficient; AIDS: Acquired immune deficiency syndrome; ALS: Amyotrophic lateral sclerosis; ASA: Anterior spinal artery; AV: arteriovenous; CSF: Cerebrospinal fluid; EV-D68: Enterovirus D68; GFAP: Glial-fibrillary-acidic-protein-antibody-IgG-associated disease; HIV: Human Immunodeficiency Virus; HTLV 1: Human T-cell lymphotropic virus 1; MOGAD: Myelin-Oligodentrocyte-Glycoprotein-Antibody-IgG-associated disease; NMOSD: Neuromyelitis Optica Spectrum Disorders; OCB: Oligoclonal bands; ON: Optic neuritis; SCDSC: Subacute combined degeneration of the spinal cord; SMA: Spinal muscle atrophy; TB: Tuberculosis.
Weidauer S et al. Cervical myelitis: a... Fortschr Rontgenstr 2023; 195: 1081–1096 | © 2023. Thieme. All rights reserved.

Sechi E, Flanagan EP. Spinal arteriovenous fistula’s often misdiagnosed as myelitis; can we stem the flow? J Neurol Sci 2020; 413: 116868

