The role of ultrasound in first-trimester screening after the introduction of NIPT as a service of public health insurance – a consensus statement of the Fetal Medicine Foundation (FMF) Germany

Die Rolle des Ersttrimester-Screenings nach Einführung von NIPT als Kassenleistung. Ein Konsensus-Statement der Fetal Medicine Foundation (FMF) Deutschland

Authors
Eberhard Merz, Bernd Eiben, Christian Thode, Berhard-Joachim Hackelöer, Renaldo Faber, Sevgi Tercanli, Rudolf Alkier

Affiliations
1 Obstetrics & Gynecology, Centre for Ultrasound and Prenatal Medicine, Frankfurt, Germany
2 Institut für Klinische Genetik Nordrhein, Labor Eiben Glaubitz, Essen, Germany
3 Laboratoriumsmedizin, MVZ wagnerstibbe für Laboratoriumsmedizin und Pathologie GmbH, Göttingen, Germany
4 Gynecology and Prenatal Medicine, Pränatale-Gynäkologie-Mammasonografie Hamburg, Praxis, Hamburg, Germany
5 Leipzig, Center of Prenatal Medicine, Leipzig, Germany
6 Praxis, Universitätsspitäl Basel, Basel, Switzerland
7 Clinical Chemistry, Labor Enders Prof Dr med Gisela Enders and Colleagues MVZ GbR, Stuttgart, Germany

Key words
Combined first-trimester screening, contingent screening, cell-free fetal DNA, prenatal ultrasound, chromosome anomalies

ABSTRACT
Combined first-trimester screening (FTS) and noninvasive prenatal testing (NIPT) have been proven to be reliable noninvasive procedures to detect the most common chromosomal abnormalities (trisomies 21, 18, 13) in the first trimester. The aim of this paper is to demonstrate the strengths and limitations of these two procedures and to give a consensus statement of the Fetal Medicine Foundation (FMF) Germany on how to use the two techniques in the first trimester after the introduction of NIPT as a service of the statutory health insurance companies in Germany.

Introduction
For two decades, combined first-trimester screening (FTS), including data on maternal age, ultrasound markers, and biochemical parameters, had been the most reliable noninvasive procedure to calculate the risk of chromosomal abnormalities between 11 + 0 and 13 + 6 weeks of gestation [1, 2, 3, 4, 5]. The introduction of noninvasive prenatal tests by sequencing cell-free placental...
Merz E et al. The role of... Ultraschall in Med 2023; 44: 600–605 | © 2023. Thieme. All rights reserved.
counseling prior to the test and after the test result is available (German Gene Diagnostics Act [37]).

The implementation of NIPT in public-health-based programs allows two different application models: 1. NIPT as a first-line screening tool (effectively replacing conventional serum and NT screening) [38, 39] or 2. NIPT as a second screening step (contingent screening model) in the case of an abnormal FTS result [38, 40]. The advantages of NIPT for first-line screening are the simplicity of the procedure and the fact that there is no need for specialized training besides qualifications in prenatal counseling.
amination allows the detection of the most common trisomies, triploidy, and the demonstration or exclusion of various structural defects (▶Table 3). As early prenatal screening provides more than just risk assessment of trisomies 21, 18 and 13, every pregnant woman should receive comprehensive information about current noninvasive and invasive procedures and early pre-eclampsia screening [22, 23, 46, 47].

There is broad consensus in several ultrasound societies and publications that a detailed first-trimester ultrasound examination should always be performed prior to an NIPT procedure [40, 47, 48, 49, 50, 51, 52]. Since NIPT has been covered by statutory health insurance since July 1, 2022, NIPT will become more popular and FTS biochemical screening, which is subject to a fee, will continue to decline. The hormone parameters free β-HCG and PAPP-A will no longer have the importance they had in pre-NIPT times, but they may continue to be offered as an option, or in situations where NIPT is not recommended (e.g., vanishing twin) or in cases with very low fetal DNA fractions. On the other hand, PAPP-A is a biomarker that is also used in pre-eclampsia screening in the first trimester [23].

As a result, FMF Germany recommends performing NIPT as a contingent procedure, either once the FTS results are available (▶Fig. 3) or directly after the FTS ultrasound examination has shown no structural fetal malformation and normal NT (▶Fig. 4).

Conclusion

While NIPT is currently focusing on screening for trisomy 21, 18, 13 and sex chromosomal abnormalities only, combined first-trimester screening with a detailed ultrasound check of the fetal anatomy is of major importance for the early detection of structural defects. Consequently, NIPT should not replace combined first-trimester screening with a detailed check of the fetal morphology. Therefore, the optimal first-trimester screening approach would be to first perform a detailed ultrasound examination and a risk calculation with the basic parameters of maternal age, crown-rump length, and nuchal translucency thickness, and – for experienced operators – with the additional ultrasound parameters absence/presence of nasal bone, ductus venosus flow, and tricuspid regurgitation. If no structural abnormality is found and the risk assessment shows a result in the low-risk or intermediate-risk group, NIPT can be performed for advanced screening for trisomies 21, 18, 13 and sex chromosome aneuploidies. If a structural abnormality is detected during the ultrasound examination, NIPT is no longer advisable and instead, CVS or an amniocentesis should be performed for karyotyping (▶Fig. 3).
as well as microarray [53] and genome sequencing [54, 55] if required.

Finally, the key statements for early prenatal screening are listed in ▶ Table 6.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[25] Merz E, Pashaj S. Embryonic and early fetal abnormalities diagnosed with three-dimensional ultrasound in the 1st trimester. In: Kurjak A, ...