Synthesis 2024; 56(04): 527-538
DOI: 10.1055/a-2088-5000
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

Transition-Metal-Free Cross-Coupling of Acetals and Grignard Reagents To Form Diarylmethyl Alkyl Ethers and Triarylmethanes

Yang Qin
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Sheng Liu
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Shi-Liang Shi
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
The authors are grateful for financial support from the National Key Research and Development Program of China (2022YFA1503702), the National Natural Science Foundation of China (22171280, 21821002), and the Program of Shanghai Academic Research Leader (22XD1424900).


Abstract

We herein report a transition-metal-free cross-coupling reaction of acetals and Grignard reagents. The method provides a modular preparation of diarylmethyl alkyl ethers, triarylmethanes, and 1,1-diarylalkanes that constitute the core structures of many bioactive molecules and synthetic motifs. A series of readily accessible acetals bearing aryl, alkenyl, and alkyl substituents efficiently coupled with commercially available aryl, alkyl, and allylic magnesium bromides to give the products in high yields. In addition to acyclic and cyclic acetals, ketal and orthoester also serve as viable substrates to afford sterically hindered tertiary ether and ketal respectively. A sequential difunctionalization of acetals led to the rapid synthesis of triarylmethanes and diarylalkanes.

Supporting Information



Publication History

Received: 27 March 2023

Accepted after revision: 08 May 2023

Accepted Manuscript online:
08 May 2023

Article published online:
30 May 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Silvestri R, Artico M, Massa S, Marceddu T, De Montis F, La Colla P. Bioorg. Med. Chem. Lett. 2000; 10: 253
    • 1b De Martino G, La Regina G, Di Pasquali A, Ragno R, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico M, Silvestri R. J. Med. Chem. 2005; 48: 4378
    • 1c Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 1d Ameen D, Snape TJ. MedChemComm 2013; 4: 893
    • 2a Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Chem. Soc. Rev. 2009; 38: 1450
    • 2b Feng X, Ding X, Jiang D. Chem. Soc. Rev. 2012; 41: 6010
    • 2c Zhao Y. Chem. Mater. 2016; 28: 8079
    • 2d Lohse MS, Bein T. Adv. Funct. Mater. 2018; 28: 1705553
  • 3 Mandal S, Mandal S, Ghosh SK, Sar P, Ghosh A, Saha R, Saha B. RSC Adv. 2016; 6: 69605

    • For reviews on triarylmethane synthesis, see:
    • 4a Mondala S, Panda G. RSC Adv. 2014; 4: 28317
    • 4b Nambo M, Crudden CM. ACS Catal. 2015; 5: 4734
    • 4c Mondal S, Roy D, Panda G. ChemCatChem 2018; 10: 1941
    • 4d Kshatriya R, Jejurkar VP, Saha S. Eur. J. Org. Chem. 2019; 3818

      For selected reviews on metal-catalyzed C–O bond functionalization, see:
    • 5a Guo L, Rueping M. Acc. Chem. Res. 2018; 51: 1185
    • 5b Zeng H, Qiu Z, Domínguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
    • 5c Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 5d Tollefson E, Hanna L, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
    • 5e Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 5f Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 5g Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 5h Rosen B, Quasdorf K, Wilson D, Zhang N, Resmerita A.-M, Garg N, Percec V. Chem. Rev. 2011; 111: 1346
    • 6a Taylor B, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
    • 6b Johnson AG, Tranquilli MM, Harris MR, Jarvo ER. Tetrahedron Lett. 2015; 56: 3486
  • 7 Wu K, Doyle AG. Nat. Chem. 2017; 9: 779
  • 8 Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876
  • 9 Wei B, Ren Q, Bein T, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 10409
    • 10a Cai Y, Yang X.-T, Zhang S.-Q, Li F, Li Y.-Q, Ruan L.-X, Hong X, Shi S.-L. Angew. Chem. Int. Ed. 2018; 57: 1376
    • 10b Zhang W.-B, Yang X.-T, Ma J.-B, Su Z.-M, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 5628
    • 10c Shen D, Xu Y, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 14938
    • 10d Wang Z.-C, Xie P.-P, Xu Y, Hong X, Shi S.-L. Angew. Chem. Int. Ed. 2021; 60: 16077
    • 10e Jiang B, Shi S.-L. Chin. J. Chem. 2022; 40: 1813
    • 10f Wang Z.-C, Gao J, Cai Y, Ye X, Shi S.-L. CCS Chem. 2022; 4: 1169
    • 11a Mitchell TA, Bode JW. J. Am. Chem. Soc. 2009; 131: 18057
    • 11b Moquist PN, Kodama T, Schaus SE. Angew. Chem. Int. Ed. 2010; 49: 7096
    • 11c Luan Y, Barbato KS, Moquist PN, Kodama T, Schaus SE. J. Am. Chem. Soc. 2015; 137: 3233
    • 12a Schneider U, Dao HT, Kobayashi S. Org. Lett. 2010; 12: 2488
    • 12b Vo C.-VT, Mitchell TA, Bode JW. J. Am. Chem. Soc. 2011; 133: 14082
    • 12c Akira H, Masahiko E, Hideki S. Chem. Lett. 1976; 941
    • 12d Braun M, Kotter W. Angew. Chem. Int. Ed. 2004; 43: 514
    • 12e Jung M, Maderna A. Tetrahedron Lett. 2004; 45: 5301
  • 13 Suzuki I, Yasuda M, Baba A. Chem. Commun. 2013; 49: 11620
  • 14 Ishikawa H, Mukaiyama T, Ikeda S. Bull. Chem. Soc. Jpn. 1981; 54: 776
  • 15 Willson TM, Amburgey J, Denmark SE. J. Chem. Soc., Perkin Trans. 1 1991; 2899
  • 16 Eildal JN. N, Andersen J, Kristensen AS, Jørgensen AM, Bang-Andersen B, Jørgensen M, Strømgaard K. J. Med. Chem. 2008; 51: 3045
    • 17a Frlan R, Kikelj D. Synthesis 2006; 2271
    • 17b Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
  • 18 Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, Mykhailiuk P, Beutner G, Collins MR, Davies A, Del MB, Gallego GM, Spangler J, Starr J, Yang S, Blackmond DG, Baran PS. Nature 2019; 573: 398
  • 19 McDaniel DH, Brown HC. J. Org. Chem. 1958; 23: 420
  • 20 Müller P, Nury P, Bernardinelli G. Eur. J. Org. Chem. 2001; 4137
  • 21 Mochalov SS, Fedotov AN, Trofimova EV, Zefirov NS. Russ. J. Org. Chem. 2015; 51: 1217
  • 22 Balakrishnan V, Murugesan V, Chindan B, Rasappan R. Org. Lett. 2021; 23: 1333
  • 23 Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2013; 15: 4398
  • 24 Fujioka H, Yahata K, Hamada T, Kubo O, Okitsu T, Sawama Y, Ohnaka T, Maegawa T, Kita Y. Chem. Asian J. 2012; 7: 367
  • 25 Xu Q, Xie H, Chen P, Yu L, Chen J, Hu X. Green Chem. 2015; 17: 2774
  • 26 Qin B, Schneider U. J. Am. Chem. Soc. 2016; 138: 13119
  • 27 Peng Z, Wang Y, Yu Z, Zhao D, Song L, Jiang C. J. Org. Chem. 2018; 83: 7900
  • 28 Muramatsu W, Nakano K. Org. Lett. 2015; 17: 1549
  • 29 Dilauro G, Cicco L, Vitale P, Perna FM, Capriati V. Eur. J. Org. Chem. 2023; 26: e202200814
  • 30 Tran VH, La MT, Kim H.-K. Org. Biomol. Chem. 2019; 17: 6221
  • 31 Wang D, Cao F.-R, Lu G, Ren J, Zeng B.-B. Tetrahedron Lett. 2021; 92: 132250
  • 32 Zhang Z, Wang H, Qiu N, Kong Y, Zeng W, Zhang Y, Zhao J. J. Org. Chem. 2018; 83: 8710
  • 33 Nambo M, Crudden CM. Angew. Chem. Int. Ed. 2014; 53: 742
  • 34 Funabiki K, Komeda T, Nishikawa K, Yamada K, Kubota Y, Matsui M. Tetrahedron 2014; 70: 9245
  • 35 Hu X, Martin D, Melaimi M, Bertrand G. J. Am. Chem. Soc. 2014; 136: 13594