Synthesis 2023; 55(15): 2304-2310
DOI: 10.1055/a-2085-4089
paper
Special Issue dedicated to Prof. David A. Evans

Synthesis of 2-Pyrones from Renewable Resources

Daniel Dobler
,
Michael Leitner
,
Peter Kreitmeier
,
Oliver Reiser
This work was supported by the Deutsche Bundesumweltstiftung (KONAROM, AZ 26920).


Abstract

An atom-economic reaction sequence on a multigram scale for synthesizing 2-pyrone was developed starting from furfuryl alcohol, a renewable resource made from bran or bagasse, utilizing a large-scale thermal rearrangement of cyclopentadienone epoxide as the key step. Additionally, 6-substituted 2-pyrone natural product derivatives are readily accessible by this approach.

Supporting Information



Publication History

Received: 10 March 2023

Accepted after revision: 03 May 2023

Accepted Manuscript online:
03 May 2023

Article published online:
31 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Diercks R, Arndt J.-D, Freyer S, Geier R, Machhammer O, Schwartze J, Volland M. Chem. Eng. Technol. 2008; 31: 631

    • Leading Reviews:
    • 2a Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
    • 2b Lee JS. Mar. Drugs 2015; 13: 1581
    • 2c Fürstner A. Angew. Chem. Int. Ed. 2018; 57: 4215
    • 2d Dobler D, Leitner M, Moor N, Reiser O. Eur. J. Org. Chem. 2021; 6180
    • 3a Zhu X.-F, Schaffner A.-P, Li RC, Kwon O. Org. Lett. 2005; 7: 2977
    • 3b Schäberle TF. Beilstein J. Org. Chem. 2016; 12: 571
    • 3c McGlacken GP, Fairlamb IJ. S. Nat. Prod. Rep. 2005; 22: 369
    • 3d Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
    • 4a Chidambaram N, Satyanarayana K, Chandrasekaran S. Tetrahedron Lett. 1989; 30: 2429
    • 4b Izumi T, Kasahara A. Bull. Chem. Soc. Jpn. 1975; 48: 1673
    • 4c Nakagawa M, Saegusa J, Tonozuka M, Obi M, Kiuchi M, Hino T, Ban Y. Org. Synth. 1977; 56: 49
    • 4d Zimmermann HE, Grunewald GL, Paufler RM. Org. Synth. 1966; 46: 101
    • 5a Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
    • 5b Lange J.-P, van der Heide E, van Buijtenen J, Price R. ChemSusChem 2012; 5: 150
  • 6 Chapman OL, Hess TC. J. Org. Chem. 1979; 44: 962
    • 7a Am Houwen-Claassen A, Klunder AJ. H, Zwanenburg B. Tetrahedron 1989; 45. 7134
    • 7b Klunder AJ. H, Bos W, Verlaak JM. M, Zwanenburg B. Tetrahedron Lett. 1981; 22: 4553
  • 8 Piancatelli G, Scettri A, Barbadoro S. Tetrahedron Lett. 1976; 3555
  • 9 Ulbrich K, Kreitmeier P, Reiser O. Synlett 2010; 2037
  • 10 Dobler D, Reiser O. J. Org. Chem. 2016; 81: 10357
  • 11 Dols PP. M, Klunder AJ. H, Zwanenburg B. Tetrahedron 1994; 50: 8515
    • 12a Tanaka K, Nakashima H, Taniguchi T, Ogasawara K. Org. Lett. 2000; 2: 1915
    • 12b Takano S, Kamikubo T, Moriya M, Ogasawara K. Synthesis 1994; 601
    • 12c Sugahara T, Fukuda H, Iwabuchi Y. J. Org. Chem. 2004; 69: 1744
    • 12d Mander LN, Thomson RJ. J. Org. Chem. 2005; 70: 1654
    • 12e Eddolls JP, Iqbal M, Roberts SM, Santoro MG. Tetrahedron 2004; 60: 2539
  • 13 Zhu J, Yang J.-Y, Klunder AJ. H, Liu Z.-Y, Zwanenburg B. Tetrahedron 1995; 51: 5847
  • 14 Wickel SM, Citron CA, Dickschat JS. Eur. J. Org. Chem. 2013; 2906
  • 15 Moss MO, Jackson RM, Rogers D. Phytochemistry 1975; 14: 2706
  • 16 Barrero AF, Oltra JE, Herrador MM, Cabrera E, Sanchez JF, Quílez JF, Rojas FJ, Reyes JF. Tetrahedron 1993; 49: 141
    • 17a Biagetti M, Bellina F, Carpita A, Viel S, Mannina L, Rossi R. Eur. J. Org. Chem. 2002; 1063
    • 17b Burkhardt I, Dickschat JS. Eur. J. Org. Chem. 2018; 3144
  • 18 Janevska S, Arndt B, Niehaus E.-M, Burkhardt I, Rösleer SM, Brock NL, Humpf H.-U, Dickschat JS. J. Biol. Chem. 2016; 291: 27403
  • 19 Wang H.-YL, Qi Z, Wu B, Kang S.-W, Rojanasakul Y, O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 259
  • 20 Ma Y, O’Doherty GA. Org. Lett. 2015; 17: 5280
  • 21 Otero MP, Santín EP, Rodríguez-Barrios F, Vaz B, de Lera ÁR. Bioorg. Med. Chem. Lett. 2009; 19: 1883
  • 22 Billington DC, Helps IM, Pauson PL, Thomson W, Willison D. J. Organomet. Chem. 1988; 354: 233
  • 23 Pirkle WH, Dines M. J. Heterocycl. Chem. 1969; 6: 1