Synthesis 2023; 55(17): 2730-2736
DOI: 10.1055/a-2085-3284
paper

Synthesis and Evaluation of Fluorous-Tagged and Polystyrene-Supported Precursors for Fluoro-benziodoxole

a   Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada, N2L 3G1, Canada
b   Department of Chemistry and Biochemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4M3, Canada
,
b   Department of Chemistry and Biochemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4M3, Canada
,
a   Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada, N2L 3G1, Canada
› Author Affiliations
This work was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada (DG 2019-04086), the Ontario Ministry of Research and Innovation (ERA ER15-11-193), and the University of Waterloo.


Abstract

Fluoro-benziodoxole, a fluorinated hypervalent iodine (HVI) reagent, has been prepared by fluoride exchange with fluorous- or polystyrene-based sulfonyloxy-benziodoxole precursors. Key to this strategy was the facile O-sulfonylation of a common hydroxy-benziodoxole precursor with sulfonyl chlorides, which enabled the easy synthesis and evaluation of previously unknown fluorous- or polystyrene-based fluoride exchange precursors. Fluorination of a fluorous-tagged iodane led to fluoro-benziodoxole in 67% yield in 10 minutes with TBAF, whereas fluoride exchange on the polystyrene-supported iodane led to the fluoro-benziodoxole in 82 ± 5% yield upon reacting with TBAF for 10 minutes.

Supporting Information



Publication History

Received: 28 March 2023

Accepted: 03 May 2023

Accepted Manuscript online:
03 May 2023

Article published online:
24 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jeschke P. Pest Manag. Sci. 2010; 66: 10
    • 1b Theodoridis G. Fluorine-Containing Agrochemicals: An Overview of Recent Developments. In Advances in Fluorine Science, Vol. 2. Tressaud A. Elsevier; Amsterdam: 2006: 121-175
    • 2a Zhou Y, Wang J, Gu ZN, Wang SN, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 2b Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 3a Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 3b Hird M. Chem. Soc. Rev. 2007; 36: 2070
    • 4a Preshlock S, Tredwell M, Gouverneur V. Chem. Rev. 2016; 116: 719
    • 4b Jacobson O, Kiesewetter DO, Chen X. Bioconjugate Chem. 2015; 26: 1
    • 4c van der Born D, Pees A, Poot AJ, Orru RV. A, Windhorst AD, Vugts DJ. Chem. Soc. Rev. 2017; 46: 4709
  • 5 Campbell MG, Mercier J, Genicot C, Gouverneur V, Hooker JM, Ritter T. Nat. Chem. 2016; 9: 1
  • 6 Miller PW, Long NJ, Vilar R, Gee AD. Angew. Chem. Int. Ed. 2008; 47: 8998
  • 7 Baudoux J, Cahard D. Org. React. 2008; 69: 1
    • 8a Teare H, Robins EG, Årstad E, Luthra SK, Gouverneur V. Chem. Commun. 2007; 2330
    • 8b Buckingham F, Kirjavainen AK, Forsback S, Krzyczmonik A, Keller T, Newington IM, Glaser M, Luthra SK, Solin O, Gouverneur V. Angew. Chem. Int. Ed. 2015; 54: 13366
    • 9a Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Angew. Chem. Int. Ed. 2010; 49: 6821
    • 9b Stenhagen IS. R, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V. Chem. Commun. 2013; 49: 1386
    • 10a Lee E, Hooker JM, Ritter T. J. Am. Chem. Soc. 2012; 134: 17456
    • 10b Beyzavi H, Mandal D, Strebl MG, Neumann CN, D’Amato EM, Chen J, Hooker JM, Ritter T. ACS Cent. Sci. 2017; 3: 944
    • 10c Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T. Science 2011; 334: 639
  • 11 Kamlet AS, Neumann CN, Lee E, Carlin SM, Moseley CK, Stephenson N, Hooker JM, Ritter T. PLOS ONE 2013; 8: e59187
    • 12a The Chemistry of Hypervalent Halogen Compounds, Vol. 1 & 2. Olofsson B, Marek I, Rappoport Z. Wiley; Chichester: 2019
    • 12b Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; 2013: 468
    • 12c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 12d Wirth T. Hypervalent Iodine Chemistry . Springer-Verlag; Berlin: 2016

      For syntheses of 1, see:
    • 13a Legault CY, Prevost J. Acta Crystallogr., Sect. E 2012; 68: 1238
    • 13b Geary GC, Hope EG, Singh K, Stuart AM. Chem. Commun. 2013; 49: 9263
    • 13c Matousek V, Pietrasiak E, Schwenk R, Togni A. J. Org. Chem. 2013; 78: 6763

      For synthetic applications of 1, see:
    • 14a Ilchenko NO, Tasch BO. A, Szabo KJ. Angew. Chem. Int. Ed. 2014; 53: 12897
    • 14b Ilchenko NO, Cortes MA, Szabó KJ. ACS Catal. 2016; 6: 447
    • 14c Ilchenko NO, Hedberg M, Szabó KJ. Chem. Sci. 2017; 8: 1056
    • 14d Yuan W, Szabó KJ. Angew. Chem. Int. Ed. 2015; 54: 8533
    • 14e Geary GC, Hope EG, Stuart AM. Angew. Chem. Int. Ed. 2015; 54: 14911
    • 14f Ulmer A, Brunner C, Arnold AM, Poethig A, Gulder T. Chem. Eur. J. 2015; 22: 3660
    • 14g Brunner C, Andries-Ulmer A, Kiefl GM, Gulder T. Eur. J. Org. Chem. 2018; 2615
    • 14h Minhas HK, Riley W, Stuart AM, Urbonaite M. Org. Biomol. Chem. 2018; 16: 7170
    • 14i Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
    • 14j Cuzzucoli F, Racicot L, Valliant JF, Murphy GK. Tetrahedron 2022; 123: 132982
    • 14k Xu K, Yang R, Yang S, Jiang C, Ding Z. Org. Biomol. Chem. 2019; 17: 8977
    • 14l Riley W, Jones AC, Singh K, Browne DL, Stuart AM. Chem. Commun. 2021; 57: 7406
  • 15 Robidas R, Legault CY. Helv. Chim. Acta 2021; 104: e2100111
  • 16 Ren J, Jia M.-C, Du F.-H, Zhang C. Chin. Chem. Lett. 2022; 33: 4834
  • 17 Yang B, Chansaenpak K, Wu H, Zhu L, Wang M, Li Z, Lu H. Chem. Commun. 2017; 53: 3497
  • 18 Cortés González MA, Nordeman P, Bermejo Gómez A, Meyer DN, Antoni G, Schou M, Szabó KJ. Chem. Commun. 2018; 54: 4286
    • 19a Bejot R, Fowler T, Carroll L, Boldon S, Moore JE, Declerck J, Gouverneur V. Angew. Chem. Int. Ed. 2009; 48: 586
    • 19b Donovan AC, Valliant JF. J. Labelled Compd. Radiopharm. 2011; 54: 65
    • 19c Hicks JW, Harrington LE, Valliant JF. Chem. Commun. 2011; 47: 7518
    • 19d Dzandzi JP. K, Vera DR. B, Valliant JF. J. Labelled Compd. Radiopharm. 2014; 57: 551
    • 19e Dzandzi JP. K, Vera DR. B, Genady AR, Albu SA, Eltringham-Smith LJ, Capretta A, Sheffield WP, Valliant JF. J. Org. Chem. 2015; 80: 7117
    • 20a Brown LJ, Bouvet DR, Champion S, Gibson AM, Hu Y, Jackson A, Khan I, Ma N, Millot N, Wadsworth H, Brown RC. D. Angew. Chem. Int. Ed. 2007; 46: 941
    • 20b Riss PJ, Kuschel S, Aigbirhio FI. Tetrahedron Lett. 2012; 53: 1717
    • 20c Topley AC, Isoni V, Logothetis TA, Wynn D, Wadsworth H, Gibson AM. R, Khan I, Wells NJ, Perrio C, Brown RC. D. Chem. Eur. J. 2013; 19: 1720
    • 20d Edwards R, de Vries W, Westwell AD, Daniels S, Wirth T. Eur. J. Org. Chem. 2015; 6909
  • 21 While 1 could be extracted and isolated by trituration with hexanes, the product was recovered with varying amounts of hydroxy-benziodoxole 4 and, occasionally, iodoalcohol 2.
  • 22 A third solid-supported (100–200 mesh) iodane 6h was prepared as a result of 8b (the precursor to 6g) being discontinued. Similar fluorination reactivity was observed between 6g and its replacement 6h; see Supporting Information.
    • 23a Merritt EA, Carneiro VM. T, Silva LF, Olofsson B. J. Org. Chem. 2010; 75: 7416
    • 23b Jalalian N, Olofsson B. Org. Synth. 2013; 90: 1
    • 23c Vogel AI, Furniss BS, Hannaford AJ, Rogers V, Smith PW. G, Tatchell AR. Vogel’s Textbook of Practical Organic Chemistry . Longman Scientific and Technical; Essex: 1978
  • 24 Iodometric titration on subsequent batches of 6f showed the iodane loading to be consistent, so the cause of the reaction irreproducibility remains unknown.
  • 25 Naka H, Akagi Y, Yamada K, Imahori T, Kasahara T, Kondo Y. Eur. J. Org. Chem. 2007; 4635
  • 26 CCDC 1902032 (6c) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures