Introduction

Nearly half a million college students participate in National Collegiate Athletic Association (NCAA) sports each year, with over 150,000 playing Division I athletics [1]. A significant number of athletes experience orthopedic injuries each year, and a proportion of those athletes go on to require orthopedic surgery [2]. In one study from a Division I institution, Wang et al. reported approximately that 16% of collegiate athletes underwent orthopedic surgery during college, equating to 80,000 NCAA athletes annually. In particular, sports with the highest rates of orthopedic surgery include women’s gymnastics, American football, and men’s wrestling [3, 4].

Like professional, national team, and Olympic athletes, collegiate athletes face unique pressures and challenges when recovering from surgery. Athletes are frequently attempting to return to NCAA sports each year, with over 150,000 playing Division I athletics [1]. A significant number of athletes experience orthopedic injuries each year, and a proportion of those athletes go on to require orthopedic surgery [2]. In one study from a Division I institution, Wang et al. reported approximately that 16% of collegiate athletes underwent orthopedic surgery during college, equating to 80,000 NCAA athletes annually. In particular, sports with the highest rates of orthopedic surgery include women’s gymnastics, American football, and men’s wrestling [3, 4].

Like professional, national team, and Olympic athletes, collegiate athletes face unique pressures and challenges when recovering from surgery. Athletes are frequently attempting to return to
a high level of physical activity as quickly as is safe after surgery. This necessitates a focus on managing pain, sleep, and nutrition in such a way that optimizes bony and soft tissue healing while minimizing muscle mass loss (►Fig. 1). Furthermore, stress surrounding the athlete’s role on the team, return to play, and future as an athlete can impact an otherwise uneventful recovery and should be addressed by the athletics staff.

- No formal guidelines exist with regard to perioperative management in elite athletes. The purpose of this narrative review is to comprehensively present the methods to reduce pain and psychological distress and maximize outcomes among collegiate athletes undergoing orthopedic surgery.

Pain Management

Post-operative pain management should be discussed with the athlete before surgery. The athletic training, orthopaedic, and anesthesia team all play important roles in discussing expectations about pain management and addressing patient concerns. Some athletes may have the expectation that opiates will be the primary source of pain control, and re-education regarding multi-modal management including neural blockade and non-pharmacologic interventions is paramount. Additionally, personal history of exposure to opiates may affect a patient’s expectations around surgical pain management. Standardization of the post-operative pain regimen can be helpful for setting boundaries and easing communication between team members.

Collegiate athletes share similarities to other elite athletes, such as Olympic athletes and professional athletes. The International Olympic Committee consensus statement regarding pain management in elite athletes delineates a multimodal approach that recognizes pain as a subjective experience with “neurobiological, cognitive, affective, contextual, and environmental factors” that all interact to result in the perception of discomfort [5]. Addressing each contributing factor is emphasized, utilizing pharmacologic management, physical and massage therapy, and psychosocial interventions. While not specific to perioperative management, these guidelines can be extrapolated to the post-surgical pain scenario.

Pharmacologic Management of Pain

The sensation of pain is a subjective interpretation of a noxious stimulus in the body. Numerous cytokines and substances have been implicated in pain signaling, and neurologic pathways also play a large role in pain perception. In the perioperative setting, nociceptive, inflammatory, and neuropathic pain may all be implicated. In this section, we address the pharmacologic methods for reduction of surgical pain as it relates to these pathways. In particular it should be noted that medications should be prescribed in the lowest effective dose for the least amount of time by a licensed healthcare provider familiar with the risks and benefits of the agent.

Peripheral Nerve Blocks

Intraoperative and early post-operative pain can be drastically reduced with a regional neural blockade. Peripheral nerve blocks have been popularized over the past two decades and generally are performed by anesthesia providers. While not available in every anatomic area, neural blockade has allowed for a reduction in sedation during surgery, as well as a reduction in post-operative opiate consumption.

Peripheral nerve blocks have numerous advantages. First, they minimize need for general anesthesia in the appropriate setting, allowing for rapid same-day recovery and reducing length of stay in the post-operative care unit or admission [6–8]. Second, they reduce post-operative pain scores and improve patient reported outcomes [9–11]. Third, patients who receive a peripheral nerve block consume less opiates compared to those who do not [9, 10]. For a collegiate athlete who may or may not have family available at the time of their surgery, these advantages can ease the burden on caregivers. Athletic trainers who frequently make day-to-day contact with the athletes should be well-versed in the typical timeline for surgical pain return after peripheral nerve blocks. When feasible, combined peripheral nerve blocks should be considered as an alternative to single-shot nerve blocks, as they can result in improved pain control, reduced opiate consumption, and increased patient satisfaction [5]. Furthermore, continuous analgesia with nerve catheters can be considered for longer-acting relief or larger surgical procedures, with options for patient-controlled analgesia [12, 13]. A central nervous system blockade (such as spinal/epidural) may be used in settings where a proximal blockade is desired but minimizes the risk of nerve injury or prolonged motor recovery.

Peripheral nerve blocks are not without risk. Perioperative neurologic symptoms, while infrequent, can be disconcerting to the patient and slow recovery. Permanent neurologic injuries of the femoral and sciatic nerves have been described and have resulted in litigation [14, 15]. Therefore, it is our practice to discuss the planned incisions and procedure with the anesthesia team and recommend the most distal block that would be effective. We avoid use of femoral and sciatic blocks in our athletes. Other rare complications include local anesthetic systemic toxicity, seizure, bleeding, and infection (most commonly with indwelling catheters) [16, 17].

Non-Opioid Pain Medications

In addition to a neural blockade, when indicated, the first-line management of surgical pain should include non-opioid pain medications, avoiding the deleterious side effect profile of opiates. In many cases, these medications can result in avoidance of opioids altogether. Unless medically contraindicated, acetaminophen is a reliable first-line analgesic and can be safely combined with a number of other medications. While it has been in use since the 1800s, its mechanism of action remains an area of study [18]. Acetaminophen has been shown to affect the cyclooxygenase (COX) pathway by inhibiting COX enzymes, reducing inflammation; however, its main analgesic effects may be at other sites such as the receptors TRPV1 and cannabinoid 1 [19, 20]. Furthermore, acetaminophen has effects on the descending serotonergic pathways, which have been implicated in reducing pain through a prostaglandin E2 receptor. Serotonergic cell bodies in the nucleus raphe magnus send axons to the dorsal horn of the spinal cord, where pain regulation occurs. Although addiction has not been observed, acetaminophen is not without risks. At high concentrations, as it enters the liver, hepatocytes metabolize the drug by components...
Glutathione stores, and the resulting byproducts damage components of the electron transport chain, including ATP synthase. This process leads to formation of free radicals, damaging liver cells. Consequently, acetyaminophen dosage needs to be monitored and kept under 150 mg/kg or 4 g/day for adults. Furthermore, collegiate athletes should be screened for and counseled regarding hepatotoxicity as it relates to alcohol and illicit substance use concurrent with acetaminophen. It is not recommended to combine alcohol with acetaminophen, and patients with non-alcoholic fatty liver disease are also at risk of hepatotoxicity at standard doses.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are another useful adjunct for treatment of inflammatory pain in the perioperative setting. These drugs can help to reduce swelling and inflammation in addition to providing some analgesic effect. The analgesic effects of NSAIDs are due to the inhibition of the enzymes that synthesize prostaglandins. Additionally, they may influence prostaglandin function after translation. The primary effect involves inhibition of the cyclooxygenase COX-2. Cyclooxygenases convert arachidonic acid into prostaglandin, which is often a key molecule in pain pathways. An overdose of NSAIDs can impact kidney health, but is mainly more common in older patients over 65 years of age. Even in these cases, damage to the kidney is rare (1%) following a 15-day treatment period. Since arachidonic acid metabolites and prostaglandins play a role in several systems, some complications, though rare, can occur in maintaining renal blood flow, electrolyte balance, and platelet function.

Interestingly, NSAIDs may slow healing in some cases. A combination of human and animal studies showed that soft tissue healing was disrupted specifically with respect to tenocyte proliferation, collagen glycosaminoglycan synthesis, and soft tissue healing in general. However, in the clinical setting, the use of NSAIDs after oral administration of the cytochrome P450 system to a reactive intermediate, N-acetyl-p-benzoquinone imine. High NAPQI depletes cellular glutathione stores, and the resulting byproducts damage components of the electron transport chain, including ATP synthase. This process leads to formation of free radicals, damaging liver cells. Consequently, acetyaminophen dosage needs to be monitored and kept under 150 mg/kg or 4 g/day for adults. Furthermore, collegiate athletes should be screened for and counseled regarding hepatotoxicity as it relates to alcohol and illicit substance use concurrent with acetaminophen. It is not recommended to combine alcohol with acetaminophen, and patients with non-alcoholic fatty liver disease are also at risk of hepatotoxicity at standard doses.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are another useful adjunct for treatment of inflammatory pain in the perioperative setting. These drugs can help to reduce swelling and inflammation in addition to providing some analgesic effect. The analgesic effects of NSAIDs are due to the inhibition of the enzymes that synthesize prostaglandins. Additionally, they may influence prostaglandin function after translation. The primary effect involves inhibition of the cyclooxygenase COX-2. Cyclooxygenases convert arachidonic acid into prostaglandin, which is often a key molecule in pain pathways. An overdose of NSAIDs can impact kidney health, but is mainly more common in older patients over 65 years of age. Even in these cases, damage to the kidney is rare (1%) following a 15-day treatment period. Since arachidonic acid metabolites and prostaglandins play a role in several systems, some complications, though rare, can occur in maintaining renal blood flow, electrolyte balance, and platelet function.

Interestingly, NSAIDs may slow healing in some cases. A combination of human and animal studies showed that soft tissue healing was disrupted specifically with respect to tenocyte proliferation, collagen glycosaminoglycan synthesis, and soft tissue healing in general. However, in the clinical setting, the use of NSAIDs after oral administration of the cytochrome P450 system to a reactive intermediate, N-acetyl-p-benzoquinone imine. High NAPQI depletes cellular glutathione stores, and the resulting byproducts damage components of the electron transport chain, including ATP synthase. This process leads to formation of free radicals, damaging liver cells. Consequently, acetyaminophen dosage needs to be monitored and kept under 150 mg/kg or 4 g/day for adults. Furthermore, collegiate athletes should be screened for and counseled regarding hepatotoxicity as it relates to alcohol and illicit substance use concurrent with acetaminophen. It is not recommended to combine alcohol with acetaminophen, and patients with non-alcoholic fatty liver disease are also at risk of hepatotoxicity at standard doses.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are another useful adjunct for treatment of inflammatory pain in the perioperative setting. These drugs can help to reduce swelling and inflammation in addition to providing some analgesic effect. The analgesic effects of NSAIDs are due to the inhibition of the enzymes that synthesize prostaglandins. Additionally, they may influence prostaglandin function after translation. The primary effect involves inhibition of the cyclooxygenase COX-2. Cyclooxygenases convert arachidonic acid into prostaglandin, which is often a key molecule in pain pathways. An overdose of NSAIDs can impact kidney health, but is mainly more common in older patients over 65 years of age. Even in these cases, damage to the kidney is rare (1%) following a 15-day treatment period. Since arachidonic acid metabolites and prostaglandins play a role in several systems, some complications, though rare, can occur in maintaining renal blood flow, electrolyte balance, and platelet function.

Interestingly, NSAIDs may slow healing in some cases. A combination of human and animal studies showed that soft tissue healing was disrupted specifically with respect to tenocyte proliferation, collagen glycosaminoglycan synthesis, and soft tissue healing in general. However, in the clinical setting, the use of NSAIDs after oral administration of the cytochrome P450 system to a reactive intermediate, N-acetyl-p-benzoquinone imine. High NAPQI depletes cellular glutathione stores, and the resulting byproducts damage components of the electron transport chain, including ATP synthase. This process leads to formation of free radicals, damaging liver cells. Consequently, acetyaminophen dosage needs to be monitored and kept under 150 mg/kg or 4 g/day for adults. Furthermore, collegiate athletes should be screened for and counseled regarding hepatotoxicity as it relates to alcohol and illicit substance use concurrent with acetaminophen. It is not recommended to combine alcohol with acetaminophen, and patients with non-alcoholic fatty liver disease are also at risk of hepatotoxicity at standard doses.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are another useful adjunct for treatment of inflammatory pain in the perioperative setting. These drugs can help to reduce swelling and inflammation in addition to providing some analgesic effect. The analgesic effects of NSAIDs are due to the inhibition of the enzymes that synthesize prostaglandins. Additionally, they may influence prostaglandin function after translation. The primary effect involves inhibition of the cyclooxygenase COX-2. Cyclooxygenases convert arachidonic acid into prostaglandin, which is often a key molecule in pain pathways. An overdose of NSAIDs can impact kidney health, but is mainly more common in older patients over 65 years of age. Even in these cases, damage to the kidney is rare (1%) following a 15-day treatment period. Since arachidonic acid metabolites and prostaglandins play a role in several systems, some complications, though rare, can occur in maintaining renal blood flow, electrolyte balance, and platelet function.

Interestingly, NSAIDs may slow healing in some cases. A combination of human and animal studies showed that soft tissue healing was disrupted specifically with respect to tenocyte proliferation, collage
Risk factors for opiate related morbidity and mortality have also been shown to include substance use disorder (in particular, prior opiate use or cocaine use), psychiatric illness, and male sex [44, 45]. In the collegiate population, prior use of opioids as a high school athlete correlated with long term misuse of opioids with an AOR of 1.36 to 1.43 depending on the number of sports played [46]. Additionally, these students were more likely to be involved in giving opioids to other college students for potential recreational use. Given the risk associated with these behaviors, multimodal treatment that minimizes postoperative opioids should be strongly considered in younger patients.

Non-Pharmacologic Pain Management

Non-pharmacological modalities to manage post-surgical pain have also been studied. TENS (transcutaneous electrical nerve stimulator) has been studied to treat both acute and chronic pain [42–44]. TENS application may result in neural sensory gating or may affect the perception of pain through another mechanism [31]. In randomized studies examining the use of TENS for post-operative pain management, there are mixed results [45–48]. However, TENS is commonly employed in our training room for post-operative pain management in the collegiate athlete population.

Other non-pharmacological options include icing, compression, and elevation. Cryotherapy can reduce tissue temperature to levels that are optimal for therapy. Evidence supporting this and the exact mechanisms that make icing useful are debatable. In a controlled study, however, some benefits have been noted. Cold, thought to cause vasoconstriction, was able to decrease swelling, as shown following ankle injuries [49]. This decrease in swelling appeared to be due to intermittent application of icing. Continuous application has been associated with increased swelling due to localized tissue damage from the low temperatures and intermittent application seems to prevent such damage. Following intermittent application of ice, patients also reported a decrease in pain, specifically during activity, but there is little evidence of any additional benefit [49]. Similarly, there is little support for compression and elevation, although the effects may depend on the site of injury. Most work has been done in ankle injuries as well as other joints. In these cases, data on pain, swelling, mobility, return to sports, return to work, and patient satisfaction are largely inconclusive [49]. There may be some patients that benefit, however, and decisions should be made on a case-by-case basis. In the training room, combined ice-compression units are commonly used to improve pain, and this may be most helpful in the lower extremities based on available evidence [50, 51].

Sleep and Perioperative Recovery

An overlooked consideration is sleep during recovery. For example, fracture healing time has been shown to increase following sleep deprivation in animal models [52]. Both pharmacological and non-pharmacological interventions can influence sleep. One consideration is the influence of light on circadian rhythms. Patients may benefit from exposure to light during the day to improve quality of sleep at night as this sets the sleep wake cycle [53]. In a related way, it would be useful to avoid artificial light towards the end of the day. In terms of pharmacology, avoidance of caffeine later in the day can help maintain sleep cycles.

Pharmacological interventions to improve sleep include benzodiazepines, zolpidem (Ambien) melatonin, and gabapentin. Benzodiazepines bind to GABA receptors at sites between α- and γ-subunits to increase receptor activity (and conduction of chloride ions). This inhibition relies on producing a negative voltage or clamping the membrane potential to that of GABA channels, which ultimately can promote sleep. Zolpidem binds to specific α1 subunits sites of GABA receptors, increasing the ability of the receptor to inhibit neural activity. Similar to benzodiazepines, it increases the ability to sleep by increasing the inhibitory influence of GABA [54]. Melatonin, produced by the pineal gland, can promote sleep by regulating the sleep wake cycle. Although it usually builds up during the day, taking additional melatonin can help to initiate the sleep part of the cycle. Gabapentin, discussed earlier as an analgesic can also influence sleep [55]. Its effects on calcium channels can increase slow wave sleep, which contributes to how affecting a period of sleep can be. Overall, these approaches to improving sleep can produce benefits in the healing process. Generally, non-pharmacological approaches are preferred, but when needed, pharmacological treatment can be added to improve a patient’s ability to sleep as they heal.

Perioperative Nutrition Support

Nutrition must be maintained at a sufficient level when an athlete is injured. It is essential to find the right balance as their rigorous exercise routine is temporarily curbed. Lack of adequate energy will lead to fatigue and muscle depletion, whereas excess energy will generate fat [56].

The goal for an injured athlete during their time off from training is to minimize muscle loss, for which simultaneous protein and carbohydrate intake is essential [56]. Adequate protein intake provides the amino acids required for essential protein metabolism aimed at muscle protein synthesis. However, it is also important to maintain a baseline carb supply because insulin and leucine together produce a synergistic effect on protein synthesis [57]. In the absence of carbs, the body has to break down muscle glycogen to use for energy. In the presence of carbs, the body can break down carbs for energy and use protein to build muscle. Protein absorption in the body has many other benefits including healing wounds, repairing broken bones, building healthy blood cells, supporting immune system function. A non-training athlete should aim for 20–40 grams of protein intake every 3–4 hrs. It is favorable to consume proteins high in leucine for quick digestion during the day, and proteins high in casein for slow digestion prior to bed. Another area of interest related to protein balance is collagen supplementation [58]. Targeted supplementation with collagen peptides has been shown in some studies to affect collagen synthesis, reduce pain, and improve functional outcomes; however further controlled studies are needed to determine the role of collagen peptide supplementation in the perioperative period [59–62].

Nutrition also plays a significant role in wound-healing. The first phase of wound-healing is inflammation, which serves to eliminate toxic agents at the lesion and restore tissue homeostasis [63]. It is typically characterized by heat, redness, pain, swelling, and fever [64]. Athletes should incorporate foods high in omega-3 fatty acids, vitamin D, antioxidants, nitrate, and fluids to reduce inflammation through their diet. Experts may also recommend supplemental
vitamins for specific types of injury. As previously mentioned, dietary protein sources high in leucine are commonly used in response to muscle injuries as it stimulates muscle protein synthesis and reduces muscle breakdown. Joint injuries are commonly treated with glucosamine and chondroitin which support growth and repair of connective tissue. In the case of tendon and ligament injuries, nitric oxide and vitamin C are used to stimulate collagen synthesis to speed healing of damaged soft tissue. Nutritional supplements for bone injuries include calcium to give bone structure and strength, and vitamin D to aid calcium absorption.

In addition to its importance to energy balance and muscle recovery, nutrition may also play a role with regard to pain and inflammation. Inflammatory pathways are mediated by omega fatty acids (FAs). In particular, Western diets tend to be higher in omega-6 FAs than omega-3 FAs [64]. Linoleic acid is the main fatty acid related to omega-6 and stimulates inflammation [65]. Therefore, dietary intake of foods containing the most potent omega-3 FAs (EPA & DHA) and supplementation with omega-3 FAs can be considered during the post-operative period for pain management [64, 65]. While mainly studied in chronic pain settings, a Mediterranean diet may be beneficial during this period as an adjunct for pain management [66, 67]. Vitamin deficiencies have also been implicated in pain perception. Low levels of vitamin D are associated with increased central hypersensitivities, and pain improvements have been shown with supplementation [68]. Therefore, in addition to evaluating vitamin D for the reasons mentioned above, it should also be evaluated and appropriately supplemented if low [69]. Deficiencies of vitamin B12 are also known to contribute to neurologic dysfunction and chronic pain [69]. While deficiency is uncommon with a Western or Mediterranean diet, vegetarians, vegans, those athletes with malabsorption problems such as celiac disease or Crohn’s disease may need supplementation [70]. Ginger and curcumin (the active compound in turmeric) also have strong anti-inflammatory properties and work by disrupting the COX-2 pathway described above [71]. Dietary intake and supplemental forms can be considered during the post-op period as an adjunct to other methods of pain management [72, 73].

Finally, hydration is important to promote regular bowel movements and alleviate medication-induced constipation [74]. Additionally, there appears to be a correlation with hydration status and pain levels, related to central sensitization [75, 76]. These findings are preliminary and should be researched further.

Psychological Considerations in the Injured Athlete

While exercise and sport is expected to boost mood and self-esteem, athletes may face other factors that put them at risk for depression including injury, performance failure, and overtraining [77, 78]. The greatest limitation on studies that assess rates of depression among athletes is reliance on self-reporting. Literature comparing rates of depression symptoms between athletes and nonathletes thus far has not produced consistent results [79]. However, studies have shown significantly higher rates of depression symptoms in athletes following injury [79].

Athletes typically undergo a variety of emotional responses in response to being injured. These feelings include sadness, frustration, anger, lack of motivation, lowered self-esteem [80]. The stress can manifest itself as depression, as they have just had something they love to do taken away from them. Often the sport itself is an outlet and escape from other emotional stresses, so inability to participate can worsen the athlete’s mental state. Fear and anxiety may set in, as the athlete worries about the uncertainty of their future and losing their competitiveness as they fall behind in training relative to their peers [81]. A comparative systematic review on mental health responses of collegiate athletes following either musculoskeletal or concussive injury sustained that athletes from both groups exhibited depressive and/or anxiety symptoms at various time points post-injury and returned to play before psychological symptoms returned to baseline [82].

There are challenges in access to mental health care for athletes. The first is the stigma attached to mental health within the sport context. Athletes are praised for their “mental toughness” and so may be less likely to engage in dialogue about their issues [75]. Even once an athlete comes forward, there may be limited access to resources. While Division 1 athletics departments commonly employ full-time athletic trainers, in-house sports medicine physicians, and dietitians, not many employ licensed psychologists [78]. Often this results in reliance on campus counseling centers, which typically do not have a psychologist with adequate training to meet a student athlete’s specific needs. Furthermore, there is a lack of training models for mental health providers in the domain sport psychology as there are only few programs that offer graduate coursework in this area [79]. Sport organizations can begin to address such challenges by hiring more full-time mental health professionals embedded within the organization to work directly with athletes, coaches, and staff. An immersive experience is important for the licensed psychologist to better understand the external stressors, motivations, and dynamics within collegiate athletics and thus be better able to provide care [80–81].

In this time of psychological distress, the athlete requires social and emotional support. Maintaining confidence is crucial for the athlete, and this may require external support as confidence can easily plummet during injury. The Sport Psychology and Leadership team can work with athletes on adjusting expectations and setting achievable goals. This allows the athlete to have successes, which helps to boost confidence. The athlete should also focus on self-progression rather than comparison with others. Focusing on self-progress allows the athlete to feel themselves moving in a forward direction, closer to being back in the game [82]. The athlete may also try to practice imagery, a form of multi-sensory visualization. This is a tactic used to elevate confidence, in which the athlete tries to see, hear, and feel success. At the time of return to play, the athlete may feel significant pressure due to fear of not meeting both self-imposed and external expectations. Dale notes that a key component of managing this pressure is to train the athlete to be motivated to pursue success. He says it is not uncommon for athletes returning from injury to find themselves preoccupied with avoiding failure. This mindset results in tentative, poor performance. By contrast, an athlete who is motivated to pursue success typically exhibits a more aggressive, confident, and successful performance. This is a critical distinction between two mindsets for athletes who are returning to competition post-injury.
Conclusion
A multi-faceted approach is paramount to optimizing post-operative recovery in collegiate athletes. Implementing a multimodal pain management approach that includes peripheral nerve blocks, non-opioid medications such as NSAIDS, acetaminophen, and gabapentin, and non-pharmacologic interventions can help minimize reliance on opioid pain medication. Institutional resources should be harnessed to support athletes in their well-being from a nutritional, psychological, and sleep standpoint. Critical to success is communication among team members and with the athlete and family to address pain and stress management and encourage timely, safe return to play.

Acknowledgements
This manuscript was written with funds from the Piedmont Grant (SPS 255963) Evaluating Post Op Opioid use after Orthopaedic Surgery in Athletes.

Funding Information
Piedmont Grant — SPS 255963

Conflict of Interest
The authors declare that they have no conflict of interest.

References
[12] Bauman NJ. The stigma of mental health in athletes: are mental toughness and mental health seen as contradictory in elite sport? BJSM 2016; 50: 135–136

[41] Johnson ML. Resolving Long-standing uncertainty about the clinical efficacy of transcutaneous electrical nerve stimulation (TENS) to relieve pain: A comprehensive review of factors influencing outcome. Medicina (Kaunas) 2021; 57: 378

[77] Purcell R, Gwyther K, Rice SM. Mental health in elite athletes: Increased awareness requires an early intervention framework to respond to athlete needs. Sports Med Open 2019; 5: 46

