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Abstrac t

Pancreatic cancer (PC) has the lowest survival rate and the high-
est mortality rate among all cancers due to lack of effective 
treatments. The objective of the current study was to identify 
potential therapeutic targets in PC. Three transcriptome data-
sets, namely GSE62452, GSE46234, and GSE101448, were 
analyzed for differentially expressed genes (DEGs) between 
cancer and normal samples. Several bioinformatics methods, 
including functional analysis, pathway enrichment, hub genes, 
and drugs were used to screen therapeutic targets for PC. Fish-
er’s exact test was used to analyze functional enrichments. To 
screen DEGs, the paired t-test was employed. The statistical 
significance was considered at p  < 0.05. Overall, 60 DEGs were 
detected. Functional enrichment analysis revealed enrichment 
of the DEGs in “multicellular organismal process”, “metabolic 
process”, “cell communication”, and “enzyme regulator acti
vity”. Pathway analysis demonstrated that the DEGs were pri-
marily related to “Glycolipid metabolism”, “ECM-receptor in-
teraction”, and “pathways in cancer”. Five hub genes were 
examined using the protein-protein interaction (PPI) network. 
Among these hub genes, 10 known drugs targeted to the CPA1 
gene and CLPS gene were found. Overall, CPA1 and CLPS genes, 
as well as candidate drugs, may be useful for PC in the future.
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Introduction
Pancreatic cancer (PC), a common tumor of the gastrointestinal 
tract, has a poor survival rate [1]. This is primarily because PC is hid-
den on the posterior side of the right upper abdomen [2]. Patients 
may be unaware of the initial symptoms such as upper abdominal 
discomfort, weight loss, yellowing of the skin, fatigue, and cogni-
tive issues, making them easily overlooked. Moreover, the lack of 
precise biomarkers for PC aggravates the issue [3]. Lack of effec-
tive treatments are the second reason for poor survival rate. Vari-
ous treatments such as surgery, radiotherapy, and chemotherapy 
are typically utilized. Nevertheless, those who have undergone sur-
gery have a high chance of relapse, and are not as responsive to 
radiation or chemotherapy treatments [4]. Resultantly, more ef-
fective biomarkers or novel treatments for PC are warranted.

Bioinformatics methods have been used in numerous diseases, 
including cancers [5–7], further providing novel insights into can-
cer. A few bioinformatics studies could examine only one gene as-
sociated with PC [8–10]. Tumors are not exclusively caused by a 
single gene, but rather are the result of several genetic factors com-
bined. Moreover, the above studies ignored targeted drugs for can-
cer. Hence, the diagnosis and management of PC is a difficult task 
and its comprehensive exploration has attracted intense curiosity.

Novel uses of earlier drugs can be a revolutionary development 
[11]. Drugs for non-cancerous have the potential to treat cancer. 
For instance, statins used for patients undergoing heart failure 
treatment have demonstrated anti-tumor activity [12–14]. Aspi-
rin, an antiplatelet drug, has shown anti-tumor effects as well [15–
17]. Hence, it is hypothesized that some existing drugs could be 
useful in the treatment of PC.

The objective of the current study was to identify target genes 
and drugs in PC using several bioinformatical methods. First, three 
pooled datasets were selected from the Gene Expression Omnibus 
(GEO) database. Second, differentially expressed genes (DEGs) were 
detected between PC patients and healthy individuals. Next, these 
DEGs were analyzed using several bioinformatics methods. Finally, 
the potential biomarkers and drugs targeted to PC were identified. 
Expectedly, the present study may offer a promising treatment for 
PC.

Materials and Methods

Data summary
Gene Expression Omnibus (GEO) database stores microarray and 
high-throughput gene expression data [18]. Three datasets, name-
ly GSE62452, GSE46234, and GSE101448, were obtained from 
GPL6244, GPL570, and GPL10558 platforms, respectively, in the 
GEO database. GSE62452 had 61 cancer and 69 normal tissues; 
GSE46234 comprised four cancer and four normal samples; 
GSE101448 showed 19 cancer and 24 normal samples (Supple-
ment ▶Table 1S) .

Ethics statement
As the data were re-analyzed from the public dataset, no ethical 
approval by the local ethics committee was necessary.

DEGs identification
GEO2R, an interactive web tool, was employed to identify the DEGs 
between PC and normal specimens [19]. The upregulated DEGs are 
logFC  > 1 and p  < 0.05. The opposite logFC are the downregulated 
DEGs. Venn diagram tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was applied to obtain common DEGs.

Functional and pathway enrichment analysis
Database for Annotation, Visualization, and Integrated Discovery 
(DAVID), an online bioinformatics tool, was used for Gene ontolo-
gy (GO) function and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses [19].

Protein-protein interaction (PPI) network
To establish an association among the DEGs and construct the PPI 
network, the Search Tool for the Retrieval of Interacting Genes 
(STRING, http://string-db.org) was applied [20]. Subsequently, Cy-
toscape version 3.7.2 was used to visualize the PPI network. The 
MCODE (Molecular Complex Detection) plugin from Cytoscape 
analyzed the hub genes [21].

Drug screening
The Drug Gene Interaction Database (DGIdb) (https://www.dgidb.
org) was used to search for drugs associated with hub genes.

Statistics analysis
Fisher’s exact test was employed to evaluate functional enrich-
ments. The t-test was applied to screen DEGs. A value of p  < 0.05 
indicated statistical significance.

Results

DEGs Identification
Venn diagram depicts 60 genes, including 33 upregulated (▶Fig. 
1a) and 27 downregulated genes (▶Fig. 1b) overlapping among 
three datasets. ▶Table 1 lists the names of DEGs.

▶Table 1	 List of the differentially expressed genes (DEGs).

Term Gene name

Upregulated genes KIAA1324, CELA3A, CEL, EGF, AQP8, CLPS, 
TRHDE, CPB1, GP2, PDK4, RBPJL, PRSS3P2, 
PDIA2, CTRC, IAPP, PLA2G1B, CELA3B, ERP27, 
CELA2B, ERP44, CTRL, TMED6, ALB, AOX1, F11, 
CPA2, REG1B, PNLIPRP2, CPA1, NR5A2, 
PNLIPRP1, KLK1, SERPINI2

Downregulated genes SERPINB5, CEACAM6, COL1A1, FN1, LAMB3, 
DPCR1, SLPI, NOX4, CDH11, ITGA2, SLC6A14, 
COL3A1, ANXA10, POSTN, CEACAM5, TMC5, 
CTSE, GABRP, THBS2, KRT19, SULF1, LAMC2, 
AHNAK2, TFF1, CLDN18, CP, AGR2
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Functional enrichment analysis
For functional enrichment, biological process (BP) terms were clus-
tered in the “multicellular organismal process”, “biological regula-
tion”, “cell communication”, “response to stimulus”, and “meta-
bolic process”. Besides, cellular component (CC) terms were asso-
ciated with “endomembrane system”, “extracellular space”, 
“vesicle”, “membrane” and “protein-containing complex”. In Mo-
lecular Function (MF) annotation, functional enrichment was asso-
ciated with “hydrolase activity”, “structural molecule”, “protein 
binding”, “ion binding,” and “enzyme regulator” (▶Fig. 2). KEGG 
pathway revealed enrichment in “small cell lung cancer”, “glycolip-
id metabolism”, “ECM-receptor interaction”, “pathways in cancer”, 
and “focal adhesion” (▶Table 2).

The construction of PPI
Forty-eight genes and 145 edges were clustered in the PPI network 
(▶Fig. 3a). Top genes were selected via the MCODE plugin. ▶Fig. 
3b shows nine top genes (CLPS, CELA3B, CPA2, CELA3A, CPA1, 
CPB1, CTRC, CTRL, and PRSS3P2).

▶Table 2	 Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
sis of the differentially expressed genes (DEGs).

Gene Description p-Value

hsa04512 ECM-receptor interaction 7.55E-07

hsa04510 Focal adhesion 9.85E-06

hsa05222 Small cell lung cancer 0.004666

hsa00561 Glycerolipid metabolism 0.014453

hsa05200 Pathways in cancer 0.0425

▶Fig. 1	 The common differentially expressed genes (DEGs) in 
GSE62452, GSE46234, and GSE101448. a: The common 33 upregu-
lated DEGs. b: The common 27 downregulated DEGs.

▶Fig. 2	 Functional analysis for differentially expressed genes.
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Screening the drugs
The top nine genes were employed to find drugs. CPA1 and CLPS 
genes matched with 10 drugs (▶Table 3). In the KEGG pathway, 
these genes were associated with the “fat digestion and absorption 
pathway”, “pancreatic secretion” and “protein digestion and ab-
sorption” (▶Fig. 4).

Discussion
PC has the highest mortality and lowest survival rates of all cancers 
due to its difficulty to be detected in the early stages and the lack 
of effective treatments. Therefore, identifying biomarkers to diag-
nose or treat PC becomes urgent. Data sequencing can reveal the 
underlying diagnostic and prognostic mechanisms of different dis-
eases, especially cancer. The development of related medications 
has opened up a new way to examine cancer and hypothesize about 
its molecular causes.

In this study, GSE62452, GSE46234, and GSE101448 datasets 
were analyzed for DEGs between abnormal and normal tissues. 
Sixty DEGs were screened. BP terms were clustered in the “multi-
cellular organismal process”, “biological regulation”, “cell commu-
nication”, “response to stimulus”, and “metabolic process”. Fur-
ther, CC terms were associated with “endomembrane system”, “ex-
tracellular space”, “vesicle”, “membrane”, and “protein-containing 
complex”. MF annotation revealed an association with “hydrolase 
activity”, “structural molecule”, “protein binding”, “ion binding” 
and “enzyme regulator”. In the KEGG pathway, PC was enriched in 
“small cell lung cancer”, “glycolipid metabolism”, “ECM-receptor 
interaction”, “pathways in cancer”, and “focal adhesion”. These re-
sults revealed an association of abnormal lipid metabolism with PC. 
Numerous research papers have established a link between lipid 
metabolism disorders and PC, in agreement with our results [22–
24].

A total of 48 genes with 145 edges were included in the PPI part. 
Thereafter, hub genes were selected by the MCODE algorithm. Nine 
top genes, namely CLPS, CELA3B, CPA2, CELA3A, CPA1, CPB1, 
CTRC, CTRL, and PRSS3P2 were employed to identify drugs. CPA1 
and CLPS genes matched with 10 drugs. In the KEGG pathway, these 
genes showed association with "pancreatic secretion”, “protein di-
gestion and absorption”, and “fat digestion and absorption path-
way”.

The protein encoded by the co-enzyme colipase (CLPS), a co-
factor for efficient dietary lipid hydrolysis, performs tissue-specific 
regulation of expression in pancreatic alveolar cells [25, 26]. CLPS 
is key to the development and progression of PC and is a likely tar-
get for treatment [27]. Furthermore, CLPS has been reported to 
contribute to type 2 diabetes development [28].

Carboxypeptidase A1 (CPA1), a zinc metalloprotease produced 
by pancreatic alveolar cells, plays a vital role in the cleavage of 
C-terminal branched chains from dietary proteins [29]. When com-
paring the differentiating marker between normal and neoplastic 
pancreatic alveolar cells, CPA1 displays high sensitivity [29, 30]. Be-
sides, the CPA1 variant aggravates the risk of chronic pancreatitis 
[31]. Hence, CLPS and CPA1 genes were associated with PC. We 
found 10 medications that have been given the green light by the 
FDA, which could potentially be useful in treating PC, and are spe-
cifically targeted at CLPS and CPA1 genes.

Conclusion
Overall, CPA1 and CLPS genes as well as candidate drugs were iden-
tified by bioinformatics methods in this study. This study may offer 
a novel idea for the diagnosis and treatment of PC.

▶Table 3	 The known drugs associated with CAP1 and CLPS genes.

Drug ID Drug name p-Value

DB04058 d-[(Amino)carbonyl]phenylalanine 0.001036

DB03441 2-Benzyl-3-iodopropanoic Acid 0.001142

DB04316 d-(N-Hydroxyamino)carbonyl]phenylalanine 0.001628

DB08222 Methoxyundecylphosphinic Acid 0.001753

DB04233 (Hydroxyethyloxy)tri(ethyloxy)octane 0.002442

DB06924 (2 R)-2-Benzyl-3-nitropropanoic acid 0.002850

DB03012 Phenylalanine-N-sulfonamide 0.003800

DB02451 B-Nonylglucoside 0.00455

DB03201 d-Cysteine 0.00570

DB02494 α-Hydroxy-β-phenylpropionic Acid 0.00995

▶Fig. 3	 The protein-protein interaction (PPI) network and hub 
genes analysis. a: The PPI networks for differentially expressed 
genes. b: The top 9 genes in the PPI networks. Red nodes indicate 
upregulated genes; blue nodes indicate downregulated genes.
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