Troubleshooting for endoscopic ultrasound-guided hepaticogastrostomy stent migration: Additional stenting by the partial stent-in-stent method

Stent migration into the abdominal cavity, one of the most serious procedural complications of endoscopic ultrasound-guided hepaticogastrostomy (EUS-HGS) [1], usually requires emergency surgery [2, 3]. No endoscopic troubleshooting technique for stent migration into the abdominal cavity with EUS-HGS has been established to date. Herein, we describe a safe and innovative rescue method for this complication.

The patient was a 60-year-old man with duodenal stenosis and biliary obstruction, for which he had undergone bile duct and duodenal stent placement. He developed obstructive jaundice due to stent misplacement; hence, EUS-HGS was performed (▶ Video 1). A small quantity of ascites was also present. Puncture was performed from B2 using a 19G needle, and an 8-mm × 8-cm fully covered self-expanding metallic stent (FCSEMS; NIR Stent) was placed by the double-wire method. After the stent released, it could not be found inside the stomach, and radiography and EUS showed that it had migrated into the abdominal cavity (▶ Fig. 1). An unsuccessful attempt at additional stent placement was made, and the guidewire also slipped out.

To recover from the migration, a puncture was made aiming at the metal stent inside the intrahepatic bile duct, and a guidewire was inserted from the stent side into the stent lumen and bile duct (▶ Fig. 2). After blunt dilatation of the cell part of the metal stent with a catheter, an 8-mm × 8-cm FCSEMS was additionally inserted.
by the partial stent-in-stent method (▶ Fig. 3). The procedure was completed by confirming the presence of the stent in the stomach (▶ Fig. 4) and computed tomography (CT) (▶ Fig. 5). After the procedure, the patient developed mild peritonitis, but this was alleviated with conservative treatment, and chemotherapy could be continued. This technique should be borne in mind when troubleshooting EUS-HGS stent migration.

Acknowledgments

This work was supported in part by The National Cancer Center Research and Development Fund (2022-A-16).

Funding

The National Cancer Center Research and Development Fund 2022-A-16

Competing Interest

The authors declare that they have no conflict of interest.

The authors

Susumu Hijioka1, Yasunari Sakamoto1,2, Yoshikuni Nagashio1, Yuta Maruki1, Takuji Okusaka1, Yutaka Saito3

1 Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
2 Department of Gastroenterology and Hepatology, International University of Health and Welfare Atami Hospital, Atami-City, Shizuoka, Japan
3 Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan

Corresponding author

Susumu Hijioka, MD
Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
Fax: +81-3-3542-3815
shijioka@ncc.go.jp
References

Bibliography

Endoscopy
DOI 10.1055/a-1941-8357
ISSN 0013-726X
published online 2022
© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Fig. 5 Computed tomography of additional stenting by the partial stent-in-stent method. The migrated stent is seen in the abdominal cavity and the additional stent in the stomach.