Zinc Acetate Catalyzed Stereoselective 1,2-trans-Glycosylation Using Glycosyl Chlorides

Mohammad Saif Ali*
P. I. Ramesh*b
Subhash Ghosh*a Subhash Babu Tatina*a,b
Madhu Babu Tatina*a,b

Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
a Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
mbtatina@gmail.com

The ICT Communication Number: ICT/Pubs./2022/169.

Abstract We report a strategy for the stereoselective synthesis of 1,2-trans-glycosides in the absence of neighboring group participation. The present protocol for the selective glycosylation mainly relies on catalyst control rather than protecting group selection. By using this protocol, several glycosides were prepared. Zinc acetate was found to be the optimal catalyst, providing the desired 1,2-trans-glycosides from glucose- and mannose-derived glycosyl halides at room temperature instead of low-temperature conditions.

Key words glycosyl chloride, no neighboring group participation, 1,2-trans-glycosylation, zinc acetate

Biological functionality of the carbohydrate molecules is highly dependent on the nature of the glycosidic bonds. Therefore, the stereoselective synthesis of 1,2-trans-glycosic bonds in the absence of anchimeric assistance is one of the most important and challenging reactions in carbohydrate chemistry.1 Several elegant methodologies have been developed for the synthesis of oligo- and polysaccharides with stereocontrol of the glycosidic linkages;2 however, most of the developed methodologies rely on neighboring group participation for stereoselective control of the glycosidic linkages,3 despite having certain limitations. Specifically, such protocols require the introduction of groups such as OAc, OBz, OPiv, OLev, OPicolyl, N-TCA, or N-Troc into the glycoside moiety to direct nucleophilic attack of the coupling partner.4c However, the incorporation of such groups is often troublesome, requiring additional steps for the regioselective introduction and removal of the participating group. In addition, this approach can limit substrate scope and often decreases overall efficiency.

Other methods that provide trans-glycosylated products in the absence of anchimeric assistance are fluorine-direct ed,4 and alkoxymethyl-directed5 glycosylation. However, most of these methods require several steps to synthesize orthogonally protected monomer building blocks as starting materials. Furthermore, they require excess of metal triflates to convert stable orthoester intermediates into the desired glycosides.6 Therefore, the development of catalytic stereoselective methods for 1,2-trans glycosylation is highly desirable.

Recently, reagent-controlled glycosylation has become an effective strategy for activation of sugar donors using S$_n$2 displacement reactions with different nucleophiles.7 Most often, the activation of glycosyl chlorides requires stoichiometric amount of reagents, such as silver(I) or mercury(II) salts.8 There have been a few reports in which activation of glycosyl chlorides takes place in the absence of anchimeric assistance using FeCl$_3$9a and bis-thioureas.9b However, the outcome of the stereochemistry was unpredictable and provided mixtures of α- and β-anomers. Separation of these diastereomers is extremely challenging. Another important strategy for 1,2-trans-glycosylation is S$_n$2 type displacement of highly unstable in situ generated per-O-TMS glycosyl iodides with suitable nucleophile in the presence of a suitable activator.10 Other than glycosyl halides, recently Bennet et al.,11 reported activation of thioglycosides using aryl(trifluoroethyl)iodonium triflimide as an activator. However, this procedure requires the use of the bulky base 2,4,6-tri-tert-butylpyrimidine (TTBP) and a multiple solvent system. Thus, development of general and catalytic methodologies to stereoccontrol glycosylations without...
neighboring group participation is highly desirable. The processes outlined herein rely on catalyst control rather than on neighboring group participation. As a prelude to this, we observed that the readily available and stable Zn(OAc)$_2$ catalyst in the absence of base, ligand, and promoters is a useful alternative metal catalyst for the Koenigs–Knorr type glycosylation at room temperature.

Optimization of the reaction parameters was explored using 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl halide (1a) as the glycosyl donor and n-hexanol (2a) as the acceptor (Table 1). Most of the classical Lewis acids [ZnCl$_2$, InCl$_3$, Cu(OTf)$_2$, Zn(OTf)$_2$] failed to promote the glycosylation reaction at room temperature, while, at higher temperatures, decomposition of the glucosyl halides was observed (entries 1–4). Interestingly, diethylzinc provided the desired 1,2-trans-glycoside product in moderate yield (entry 5).

To improve the yield of the desired product 4a, we further continued our screening with Zn(OAc)$_2$ in toluene, and found that 4a was obtained in moderate yield along with unwanted glucosyl acetate 5a (Table 1, entry 6). We then explored the reaction by replacing toluene with DCM. Zinc acetate successfully catalyzed Koenigs–Knorr glycosylation at room temperature in DCM, and provided the desired compound 4a in 75% yield with complete 1,2-trans-selectivity (entry 7). However, with increasing catalyst load, the amount of unwanted byproduct 5a also increased (entry 8).

Anomeric-participating solvents such as acetonitrile (entry 9) did not change the selectivity, and β-participating solvents such as Et$_2$O (entry 10) did not alter the selectivity either. Further attempts to improve yield of the desired product with Pd(OAc)$_2$-catalyzed activation of the glycosyl halide was also not successful (entry 11). These observations led us to choose Zn(OAc)$_2$ (50 mol%), in CH$_2$Cl$_2$ at room temperature as the optimal conditions (entry 7).

The structure and anomeric selectivity for the formation of the desired glucoside 4a were confirmed from 1H NMR spectroscopy, where the anomeric proton (H1) appeared at $\delta = 4.39$ ppm ($d, J = 7.8$ Hz, 1H). The corresponding 13C NMR signal for the β-isomer carbon (C1) appeared at $\delta = 103.7$ ppm. A very diagnostic 13C signal for the α-isomer would appear at $\delta = 96.8$ (C1) ppm. We next examined the scope and generality of the optimized reagent system with a wide range of nucleophiles. Initially, we explored the utility of the protocol for the synthesis of β-glucosides. Scheme 1 lists the Zn(OAc)$_2$-catalyzed glycosylation reaction between glucosyl donor 1a and various aglycone O-nucleophiles, including primary and secondary alcohols. Various alcohols including n-hexanol, geraniol, citronellol, phenyl ethanol, cholesterol, fenchol, and menthol reacted with glucosyl chloride to give the corresponding 1,2-trans-glycosides 4a–r in 60–75% yields with complete 1,2-trans-selectivity. It is pertinent to mention that the current glycosylation strategy was extended to acid-sensitive

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagent (mol%)</th>
<th>Solvent</th>
<th>Temp. (°)</th>
<th>Time (h)</th>
<th>Yield (%) (4a/5a)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZnCl$_2$(20)</td>
<td>CH$_2$Cl$_2$</td>
<td>40</td>
<td>24</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>InCl$_3$(20)</td>
<td>CH$_2$Cl$_2$</td>
<td>40</td>
<td>24</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>Cu(OTf)$_2$(20)</td>
<td>CH$_2$Cl$_2$</td>
<td>40</td>
<td>24</td>
<td>NR</td>
</tr>
<tr>
<td>4</td>
<td>Zn(OTf)$_2$(20)</td>
<td>CH$_2$Cl$_2$</td>
<td>40</td>
<td>24</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>Et$_2$Zn (150)</td>
<td>toluene</td>
<td>60</td>
<td>12</td>
<td>58 (4a)</td>
</tr>
<tr>
<td>6</td>
<td>Zn(OAc)$_2$(20)</td>
<td>toluene</td>
<td>60</td>
<td>12</td>
<td>50:10</td>
</tr>
<tr>
<td>7</td>
<td>Zn(OAc)$_2$(50)</td>
<td>CH$_2$Cl$_2$</td>
<td>rt</td>
<td>5</td>
<td>75:10</td>
</tr>
<tr>
<td>8</td>
<td>Zn(OAc)$_2$(100)</td>
<td>CH$_2$Cl$_2$</td>
<td>rt</td>
<td>5</td>
<td>78:20</td>
</tr>
<tr>
<td>9</td>
<td>Zn(OAc)$_2$(100)</td>
<td>CH$_2$CN</td>
<td>rt</td>
<td>12</td>
<td>45:24</td>
</tr>
<tr>
<td>10</td>
<td>Zn(OAc)$_2$(100)</td>
<td>Et$_2$O/CH$_2$Cl$_2$ (1:1)</td>
<td>rt</td>
<td>12</td>
<td>40:20</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)$_2$(10)</td>
<td>CH$_2$Cl$_2$</td>
<td>40</td>
<td>24</td>
<td>NR</td>
</tr>
</tbody>
</table>

a Reaction conditions: 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl chloride 1a (1 equiv), n-hexanol 2a (1.2 equiv).

b Isolated yields α/β ratio calculated from 1H NMR analysis after column chromatography purification. NR: No Reaction.
TMS-protected alcohols such as TMS-ethanol (compound 4l), and the nitrogen containing 3-azido-1-propanol also reacted smoothly to yield desired compound 4m (62%).

Having obtained excellent results with glucosyl chlorides, we turned our attention to mannopyranoside chloride and mannofuranoside chloride donors (Scheme 2). In this case, the reaction using donors 1b and 1c gave the desired mannopyranoside glycosides 6a–c and mannofuranoside glycosides 7a–f with good yields, but the stereoselectivity was compromised. We presume that, due to the strong endo-anomeric effect in mannose derivatives, competition between S_N2 and S_N1 pathways leads to diastereomeric mixtures with the trans-glycosylated product as the major stereoisomer.

The scope of the reaction was further tested with various nucleophiles to yield the desired glycosides in good yields (Scheme 2). Furthermore, a gram-scale synthesis of β-allyl glucopyranoside 4s was achieved using allyl alcohol and glucosyl chloride in 60% yield (Scheme 3).

The mechanistic pathway for this 1,2-trans-glycosylation is not currently conclusive, although a proposed mechanism is depicted in Figure 1. The initial activation of the alcohol acceptor with Zn(OAc)_2 produces reaction intermediate I, which coordinates with the glucosyl chloride and delivers the nucleophile from the β-face via an S_N2 mechanism, resulting in the 1,2-trans-glycosylated product as the sole diastereomer. The catalytic cycle continues by the activation of the glycosyl chloride with intermediate II, which leaves ZnCl_2 in the reaction medium that reacts further with acetic acid to reform Zn(OAc)_2. In the case of mannopyranosides and furanosides, a mixture of diastereomers with the 1,2-trans-glycosylated product as major isomers was observed. This is probably due to the strong endo-anomeric effect operating via an S_N1 mechanism.
In summary, we have developed a 1,2-trans-glycosylation protocol of glycosyl chlorides with various O-nucleophiles in the presence of Zn(OAc)$_2$. The protocol described herein is efficient and furnishes the desired 1,2-trans-glycosylated products from glucopyranoside, mannopyranoside, and mannofuranoside chlorides. Mechanistic investigations as well as applications of this protocol in the synthesis of glycoconjugates are in progress.

Scheme 2 Zn(OAc)$_2$-catalyzed reaction between glycosyl chlorides 1b, 1c with different alcohols. Reagents and conditions: Sugar donor (1 equiv) reacted with the corresponding O-nucleophile (1.2 equiv) in the presence of Zn(OAc)$_2$ (50 mol%) at room temperature.

Scheme 3 Gram-scale synthesis of β-allyl-glucopyranoside (4s)

Synthesis of 4a–r, 6a–c, and 7a–f; General Procedure
To a stirred solution of glycosyl chloride 1a–c (83 mg, 0.15 mmol) in anhydrous CH$_2$Cl$_2$ (3 mL) was added the requisite alcohol (0.18 mmol) and Zn(OAc)$_2$ (0.075 mmol) at room temperature, and the resulting solution was stirred at room temperature for 5 h. The reaction mixture was evaporated under reduced pressure, and the residue was purified using silica gel chromatography (EtOAc/hexane, 2:8).

n-Hexyl-2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (4a)
Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl chloride (0.15 mmol, 84 mg) and n-hexanol (0.18 mmol, 23 μL). Column chromatography purification using EtOAc/hexane (2:8) gave 4a as a white solid (β-anomer only, 70 mg, 75%).
Propargyl-2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (4d)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl chloride (0.15 mmol, 84 mg) and propargyl alcohol (0.18 mmol, 11 μL). Column chromatography purification using EtOAc/hexane (2:8) gave 4d as a gum (β-anomer only, 53 mg, 62%).

Cinnamyl-2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (4i)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl chloride (0.15 mmol, 84 mg) and cinnamyl alcohol (0.18 mmol, 24 μL). Column chromatography purification using EtOAc/hexane (2:8) gave 4i as a white solid (β-anomer only, 66 mg, 67%).

2-(Trimethylsilyl)ethane-2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (4l)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl chloride (0.15 mmol, 84 mg) and 2-(trimethylsilyl)ethanol (0.18 mmol, 26 μL). Column chromatography purification using EtOAc/hexane (2:8) gave 4l as a white solid (β only, 57 mg, 60%).

Mp 102–104 °C; [α]22 +0.198 (c = 0.014, CHCl3).

**1H NMR (500 MHz, CDCl3): δ = 7.37–7.20 (23, m, 18 H), 7.07–7.03 (23, m, 18 H), 6.71–6.65 (23, m, 18 H), 6.57 (dd, J = 15.9 Hz, 1 H), 6.23 (dt, J = 15.9, 6.0 Hz, 1 H), 4.93–4.84 (m, 2 H), 4.78–4.64 (m, 2 H), 4.53 (dd, J = 12.2 Hz, 1 H), 4.46 (dd, J = 11.5, 7.1 Hz, 1 H), 4.37 (dd, J = 7.8 Hz, 1 H), 3.71 (dd, J = 10.4, 6.8 Hz, 1 H), 3.66 (dd, J = 10.7, 1.7 Hz, 1 H), 3.59 (dd, J = 10.6, 5.2 Hz, 1 H), 3.56 (dd, J = 9.0 Hz, 1 H), 3.49 (t, J = 9.3 Hz, 1 H), 3.42–3.36 (m, 2 H), 3.35–3.31 (m, 2 H), 1.11–1.00 (m, 1 H), 0.52–0.41 (m, 2 H), 0.19 (dd, J = 4.8, 0.7 Hz, 2 H).

13C NMR (125 MHz, CDCl3): δ = 138.7, 138.6, 138.29, 138.20, 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 127.6, 103.3, 84.8, 82.3, 78.0, 75.7, 75.0, 74.9, 74.8, 74.6, 73.5, 69.1, 10.6, 3.4, 3.0.
1,3,3-Trimethyl-2-norbornane-2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (4n)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl chloride (0.15 mmol, 84 mg) and fenchol (0.18 mmol, 30 μL). Column chromatography purification using EtOAc/hexane (2:8) gave 4n as a yellow viscous liquid (β-anomer only, 61 mg, 60%).

HRMS (ESI-TOF): m/z [M + Na]+ calcd. for C42H44NaO6: 663.3118; found: 663.3186.

Cholesterol-2,3,4,6-tetra-O-Benzy1-α-L-mannopyranoside (6a)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-L-mannopyranosyl chloride (0.15 mmol, 84 mg) and cholesterol (0.18 mmol, 70 mg). Column chromatography purification using EtOAc/hexane (2:8) gave 6a as a yellow viscous liquid (α-β anomers = 2:1, 84 mg, 62%).

HRMS (ESI-TOF): m/z [M + Na]+ calcld. for C41H41NaO6: 931.6009; found: 931.6009.

n-Hexyl-2,3,4,6-tetra-O-benzyl-β-L-mannopyranoside (6b)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-β-D-mannopyranosyl chloride (0.15 mmol, 84 mg) and n-hexanol (0.18 mmol, 23 μL). Column chromatography purification using EtOAc/hexane (2:8) gave 6b as a yellow viscous liquid (α-β anomers = 1:11, 65 mg, 70%).

HRMS (ESI-TOF): m/z [M + Na]+ calcd. for C42H44NaO6: 931.6009; found: 931.6009.

n-Decyl-2,3,4,6-tetra-O-benzylα-L-mannopyranoside (6c)

Prepared by the General Procedure using 2,3,4,6-tetra-O-benzyl-α-L-mannopyranosyl chloride (0.15 mmol, 84 mg) and n-decanol (0.18 mmol, 36 μL). Column chromatography purification using EtOAc/Hexane (2:8) gave 6c as a yellow viscous liquid (α-β anomers = 1:7, 61 mg, 70%).

HRMS (ESI-TOF): m/z [M + Na]+ calcld. for C43H46NaO6: 647.3349; found: 647.3396.

Synthetic Open Access Paper

M. S. Ali et al.

SynOpen 2022, 6, 219–226

n-Decyl-2,3,5,6-di-O-isopropylidenephosphono-α/β-D-mannofuranoside (7b)
Prepared by the General Procedure using 2,3:5,6-di-O-isopropylidenephosphono-α-D-mannofuranosyl chloride (0.15 mmol, 42 mg) and n-decanol (0.18 mmol, 36 µL). Column chromatography purification using EtOAc/hexane (2:8) gave 7b as a yellow viscous liquid (α/β = 3:1, 45 mg, 75%).

1H NMR (400 MHz, CDCl3): δ = 4.90 (s, 1 H), 4.71 (dd, J = 5.9, 3.6 Hz, 1 H), 4.51 (dd, J = 5.9, 3.6 Hz, 1 H), 4.33 (dd, J = 7.8, 6.3, 4.4 Hz, 1 H), 4.04 (dd, J = 8.7, 5.3 Hz, 1 H), 3.96 (dd, J = 8.7, 4.4 Hz, 1 H), 3.85 (dt, J = 9.7, 6.7 Hz, 1 H), 3.54 (dt, J = 9.7, 6.7 Hz, 1 H), 3.30 (dt, J = 9.7, 6.7 Hz, 1 H), 1.49–1.45 (m, 2 H), 1.40 (s, 3 H), 1.38 (s, 3 H), 1.31 (s, 1 H), 1.25 (s, 3 H), 1.19 (s, 14 H), 0.81 (t, J = 6.9 Hz, 3 H).

13C NMR (125 MHz, CDCl3): δ = 112.6, 112.5, 109.2, 106.2, 106.0, 85.1, 84.8, 80.2, 79.5, 79.2, 73.2, 70.5, 67.5, 67.0, 66.4, 31.9, 30.9, 29.6, 29.5, 29.4, 29.3, 26.9, 26.1, 25.9, 25.2, 24.5, 22.7, 14.1.

cis-3-Nonen-2,3,5,6-di-O-isopropylidenephosphono-α/β-D-mannofuranoside (7c)
Prepared by the General Procedure using 2,3:5,6-di-O-isopropylidenephosphono-α-D-mannofuranosyl chloride (0.15 mmol, 42 mg) and cis-3-nonen-1-ol (0.18 mmol, 31 µL). Column chromatography purification using EtOAc/hexane (2:8) gave 7c as a yellow viscous liquid (α/β = 2:1, 39 mg, 68%).

1H NMR (400 MHz, CDCl3): δ = 5.47–5.52 (m, 1 H), 5.31–5.21 (m, 1 H), 4.92 (s, 1 H), 4.70 (dd, J = 5.9, 3.6 Hz, 1 H), 4.51 (dd, J = 5.9, 3.6 Hz, 1 H), 4.33 (dd, J = 7.7, 6.3, 4.4 Hz, 1 H), 4.04 (dd, J = 8.7, 6.3 Hz, 1 H), 3.96 (dd, J = 8.7, 4.4 Hz, 1 H), 3.86 (dd, J = 7.8, 3.6 Hz, 1 H), 3.54 (dt, J = 9.6, 7.0 Hz, 1 H), 3.33 (dt, J = 9.6, 6.9 Hz, 1 H), 2.23 (q, J = 7.0 Hz, 2 H), 2.00–1.90 (m, 2 H), 1.40 (s, 3 H), 1.39 (s, 3 H), 1.31 (s, 3 H), 1.26 (s, 3 H), 1.24–1.15 (m, 3 H), 0.81 (t, J = 6.9 Hz, 3 H).

13C NMR (100 MHz, CDCl3): δ = 132.4, 125.1, 112.7, 112.5, 109.2, 106.2, 105.9, 85.1, 84.8, 80.2, 80.1, 79.5, 79.2, 73.2, 70.6, 67.0, 66.4, 31.5, 30.9, 29.7, 29.3, 27.6, 27.3, 26.9, 25.95, 25.92, 25.2, 24.6, 24.5, 22.5, 14.0.

Cholesterol-2,3,5,6-di-O-isopropylidenephosphono-α/β-D-mannofuranoside (7f)
Prepared by the General Procedure using 2,3:5,6-di-O-isopropylidenephosphono-α-D-mannofuranosyl chloride (0.15 mmol, 42 mg) and cholesterol (0.18 mmol, 70 mg). Column chromatography purification using EtOAc/hexane (2:8) gave 7f as a yellow viscous liquid (α/β = 1:1, 63 mg, 67%).

1H NMR (500 MHz, CDCl3): δ = 5.27 (d, J = 5.1 Hz, 1 H), 5.07 (s, 1 H), 4.72 (dd, J = 5.8, 3.6 Hz, 1 H), 4.50 (dd, J = 5.9, 3.6 Hz, 1 H), 3.46–3.49 (m, 1 H), 4.04 (dd, J = 8.6, 6.4 Hz, 1 H), 3.96 (dd, J = 8.7, 4.3 Hz, 1 H), 3.91 (dd, J = 7.7, 3.5 Hz, 1 H), 3.41–3.30 (m, 1 H), 2.30–2.13 (m, 2 H), 1.97–1.85 (m, 2 H), 1.85–1.68 (m, 1 H), 1.52–1.35 (m, 12 H), 1.33–1.28 (m, 3 H), 1.30–1.20 (m, 6 H), 1.21–1.13 (m, 2 H), 1.11–0.96 (m, 7 H), 0.92 (s, 6 H), 0.84 (t, J = 7.5 Hz, 3 H), 0.80 (d, J = 2.2 Hz, 3 H), 0.79 (d, J = 2.2 Hz, 3 H), 0.60 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 140.5, 121.9, 112.6, 112.4, 109.2, 104.9, 104.3, 85.4, 85.1, 80.2, 79.6, 79.2, 73.2, 70.5, 67.0, 64.6, 56.7, 56.1, 50.1, 42.3, 40.1, 39.7, 39.5, 37.0, 36.7, 36.2, 35.8, 31.9, 30.9, 28.2, 28.0, 27.9, 27.8, 26.9, 25.96, 25.91, 25.2, 24.6, 24.5, 24.3, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8.

Conflict of Interest
The authors declare no conflict of interest.
Funding Information

The research was supported by the Science and Engineering Research Board (SERB), DST New Delhi (RJF/2020/000083). T.M.B gratefully acknowledges the SERB for financial support in the form of a Ramanujan Fellowship. R.P.I acknowledges the Council of Scientific and Industrial Research (CSIR) for a Fellowship.

Acknowledgment

The authors are grateful to the Director of CSIR-ICT for providing necessary infrastructure.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/a-1941-3801.