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ABSTRACT

Neuroendocrine tumors (NETs) occur in various regions of the
body and present with complex clinical and biochemical phe-
notypes. The molecular underpinnings that give rise to such
varied manifestations have not been completely deciphered.
The management of neuroendocrine tumors (NETs) involves
surgery, locoregional therapy, and/or systemic therapy. Sever-
al forms of systemic therapy, including platinum-based chemo-
therapy, temozolomide/capecitabine, tyrosine kinase inhibi-
tors, mTOR inhibitors, and peptide receptor radionuclide
therapy have been extensively studied and implemented in the
treatment of NETs. However, the potential of immune check-
point inhibitor (ICI) therapy as an option in the management
of NETs has only recently garnered attention. Till date, it is not
clear whether ICI therapy holds any distinctive advantage in
terms of efficacy or safety when compared to other available
systemic therapies for NETs. Identifying the characteristics of
NETs that would make them (better) respond to ICls has been
challenging. This review provides a summary of the current
evidence on the value of ICI therapy in the management of ICls
and discusses the potential areas for future research.

Introduction

The incidence of neuroendocrine tumors (NETs) is increasing and
is estimated to be around 1.01-5.25 cases per 100 000 population
based on data from the United States, Japan, and European regis-

* Co-senior authors

tries [1-3]. Several forms of locoregional and systemic medical and
surgical therapies have been used with varying efficacies. Immu-
notherapy, particularly with immune checkpoint inhibitors (ICls)
has only recently emerged as one of the options for systemic ther-
apy for NETs. To date, the role of ICl therapy and other forms of im-
munotherapy in the management of NETs is not well established.
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The various molecular and cellular mechanisms as well as the tumor
microenvironmental factors that may regulate the response of NETs
to ICl therapy are yet to be completely understood. In this review,
we discuss the current knowledge on the efficacy of ICl therapy in
the treatment of NETs and discuss the potential areas for future re-
search.

Neuroendocrine tumor biology and current standard
of care

NETs are benign or malignant tumors that demonstrate variable
rates of growth and have the ability to store and secrete biologi-
cally active peptides and amine compounds [4]. These tumors arise
from the so-called diffuse neuroendocrine system of the body, the
embryologic origins of which thought to be either from the neural
crest or from the gut endoderm [5]. NETs arise from the various
neuroendocrine cell types, including the ganglionic cells of the
nervous system, paraganglionic chromaffin cells, pancreaticislets,
adrenal medulla, and thyroid c-cells [5]. These tumors also demon-
strate immunohistochemical reactivity to neuronal markers such
as chromogranin A, synaptophysin, or neuron-specific enolase [4].
NETs can occur in various regions of the body, including but not
limited to the gastrointestinal tract, pancreas, lungs, bronchus, thy-
mus, skin, cervix, prostate, and the thyroid [6-10]. While most of
these tumors are slow growing, some tumors such as high-grade
NETs, neuroendocrine carcinomas (NECs), medullary thyroid can-
cer (MTC), Merkel cell carcinoma (MCC), and certain forms of phe-
ochromocytomas and paragangliomas (PPGLs) tend to be more
aggressive and can metastasize to distant sites [6, 11, 12].

As per the 2019 World Health Organization guidelines, NETs are
classified into different grades depending on the mitotic rate or
Ki-67 proliferative index: G1 [ <2 mitoses/10 high power field
(HPF), <3 % Ki-67 index], G2 (2-20 mitoses/10 HPF, 3-20 % Ki-67
index), and G3 (>20 mitoses/10 HPF,>20 % Ki-67 index) [13]. NECs
are now a distinct subtype from NETs and are further classified into
small-cell NECs (SCNECs) and large-cell NECs (LCNECs). While both
G3 NETs and NECs have a high mitotic rate/Ki-67 index, the main
difference lies in their differentiation and clinical response to treat-
ment: NECs tend to be poorly differentiated and respond to plati-
num-based chemotherapy while G3 NETs are well-differentiated
and relatively resistant to platinum-based chemotherapy but can
be less aggressive than NECs [13, 14]. Apart from these, mixed NET-
non-NET neoplasms are also a part of this classification where the
differentiation and histopathology can be variable. The course of
management of NETs is determined by the anatomical location of
the primary tumor, biochemical phenotype, histological grade of
the tumor, and staging of the disease [12, 15-17]. Surgery is the
preferred modality of treatment for localized non-metastatic NETs,
and a cytoreductive surgical approach could be utilized for the
treatment of metastatic disease [18]. Locoregional therapies such
as radiofrequency ablation, transarterial embolization, stereotac-
tic radiotherapy, and chemoembolization are also feasible options
for liver metastases, as well as palliative radiation to bone metas-
tases [18-20].

Such a multimodality approach is displayed in the illustrative
history of a 48-year-old man who was found to have an elevated
serum calcium up to 14 mg/dl (normal, 8.6-10.0), alkaline phos-
phatase and gamma glutamyl transferase during routine blood
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a 09/2020, MIP b 02/2022, MIP

> Fig. 1 a: %8Ga-DOTATATE PET/CT scan in Maximum Intensity
Projection (MIP) display. Scan was on 09/2020 with multiple liver
lesions (hot tumors) and primary pancreatic NET (blue arrow).

b: 68Ga-DOTATATE PET/CT scan in Maximum Intensity Projection
(MIP) display. Scan was on 02/2022 with multiple liver lesions again
visualized (hot tumors) and primary pancreatic NET (blue arrow).
The size is smaller for some of the liver lesions.

work in 2018. Computed tomography (CT) of the abdomen re-
vealed a pancreatic mass and liver tumors. Biopsy of the pancreat-
ic mass showed a low-grade neuroendocrine tumor. Hypercalce-
mia was mediated by parathyroid hormone-related peptide. He re-
ceived monthly long-acting octreotide (Sandostatin LAR) 30 mg
and was started on denosumab and switched to zoledronic acid
with slight decline but without normalization of serum calcium. In
3/2020, he underwent transarterial chemoembolization of multi-
ple metastases within the right and left hepatic lobe. Hypercalce-
mia continued. He then had a gallium-68 (68Ga)-DOTATATE posi-
tron emission tomography computed tomography (PET/CT) imag-
ing (> Fig. 1a, » 2a) and underwent therapy with 4 cycles of
lutetium-177 (77Lu)-DOTATATE therapy in 09/2020, 11/2020,
1/2021, 3/2021. The lesions were stable on 02/2022 8Ga-DO-
TATATE PET/CT imaging (> Fig. 1b, » 2b). Several months later his
serum Ca has dropped but remains above normal range and in
06/2022 was measured at 10.6 mg/d| (8.6-10.0) while continuing
monthly Sandostatin LAR 30 mg. Zoledronic acid was stopped in
June 2021.

In patients with metastatic disease but with low tumor burden,
frequent follow-up with or without treatment with somatostatin
analogs (SSAs) such as octreotide [21, 22], and lanreotide [23, 24],
especially in patients with somatostatin receptor-positive (SSTR +)
NETs and/or hormonally active NETs such as carcinoids, insulino-
mas, glucagonomas, and others [20] is needed. Several systemic
therapy options are available for the treatment of advanced, met-
astatic NETs [6, 12,17, 20, 25]. Some of the systemic therapy op-
tions include mechanistic target of rapamycin (mTOR) inhibitor
everolimus [26, 27], tyrosine kinas inhibitor (TKI) sunitinib [28, 29],
vascular endothelial growth factor (VEGF) inhibitor bevacizumab
[30], interferon o [30,31], and for the treatment of SSTR + NETs,
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peptide receptor radionuclide therapy (PRRT) with radiolabeled
SSAs such as lutetium-177 (177Lu)-DOTA-Tyr3-octreotate (DO-
TATATE) [32]. A combination of these therapies is also utilized for
the treatment of NETs [27, 30, 32]. Chemotherapeutic regimens
are also utilized in the treatment of more aggressive forms of NETs/
neuroendocrine carcinomas (NECs), some of which include cispla-
tin/etoposide [33], carboplatin/etoposide [20], oxaliplatin-based
therapy (FOLFOX, CAPEOX) [20], irinotecan-based therapy (cispla-
tin/etoposide, FOLFIRI, FOLFIRINOX) [20], and temozolomide, ei-
ther as a single agent or with capecitabine [34, 35].

Such a treatment approach includingimmunotherapy is shown
in the history of a 43-year-old man who presented with abdominal
pain due to small bowel obstruction in 2015. He was previously
worked up for irritable bowel syndrome in 2013 and had ongoing
diarrhea before 2013. After small bowel resection and ongoing ab-
dominal discomfort and diarrhea, he presented to a NET center in
2016 and underwent an indium-111 (111In)-octreoscan showing
evidence of mesenteric lymphadenopathy » Fig. 3a, b). Bulky mes-
enteric lymph nodes, small bowel containing the primary G3 NET
(Ki-67 index 25 %), and the gallbladder were resected, and month-
ly octreotide LAR was started in an adjuvant setting. Four months
later, imaging studies suggested tumor recurrence in the liver and
peritoneum and the patient started systemic therapy with capecit-
abine and temozolomide, however, developed progressive disease
(> Fig. 4a). Therapy was changed to carboplatin/etoposide for 8
months which was ineffective, and then the patient received 3 cy-
cles of pembrolizumab, unfortunately with disease progression
(» Fig. 4b).

A meta-iodobenzylguanidine (MIBG) scanin 6/2016 was not avid
for liver lesions that were seen on magnetic resonance imaging
(MRI). Molecular profiling did not find disease associated mutations
orvariants of uncertain significance. Microsatellite instability (MSI)
testing with immunohistochemical stains for MLH1, MSH2, PMS2,
and MSH6 showed continued nuclear expression of all four proteins

G 09/2020, PET/CT trans axial fused image

in the poorly differentiated NEC, implying low probability of a MSI
high tumor. PD-L1 expression was negative.

The National Comprehensive Cancer Network (NCCN) 2021
guidelines endorses the use of all of these locoregional and system-
ic therapy for the management of NETs as category 2 A (low-level
evidence and uniform NCCN consensus that a therapy is appropri-
ate) recommendations [20]. The North American Neuroendocrine
Tumor Society (NANETS) released its compendium guidelines in
2021 in partnership with the Commonwealth Neuroendocrine
Tumor Research Collaboration (CommNETs) comprising Canada,
Australia, and New Zealand, along with endorsements and updat-
ing of the 2015 European Neuroendocrine Society (ENETS) guide-
lines [36]. In the NANETS guidelines, most of these systemic ther-
apies were endorsed as grade B or C recommendations as per the
Oxford Centre for Evidence-Based Medicine [36].

Role of immune checkpoint inhibitor therapy in
neuroendocrine tumors

ICls are monoclonal antibodies that target the immune co-inhibi-
tory receptors as well as their respective ligands, including pro-
grammed cell death protein-1 (PD-1), PD-ligand 1 (PD-L1), and cy-
totoxic T-lymphocyte antigen 4 (CTLA-4) [37,38]. The efficacy of
ICIs has been well-demonstrated in the management of various
cancers [39-43]. In addition to these proteins, the T-cellimmuno-
globulin and mucin-domain containing-3 (TIM-3), lymphocyte ac-
tivation gene-3 (LAG-3), and T-cell immunoglobulin and ITIM do-
main (TIGIT) are additional co-inhibitory proteins that could serve
as potential targets for the next generation of ICls [44, 45].
Several phase Ib and phase Il studies as well as retrospective
studies have evaluated the efficacy of ICIs for the treatment of a va-
riety of NETs [46-62]. A summary of data published on ICl therapy
in NETs is provided in > Table 1. As evident in this table, full-length
articles related to ICl therapy in NETs, except for MCC, have been
published only since as recently as 2020. However, the objective
response rates (ORR) have been low to modest, with most trial

02/2022, PET/CT trans axial fused image

> Fig. 2 a: %8Ga-DOTATATE PET/CT scan in transaxial fused image. Scan was on 09/2020 with multiple liver lesions (hot tumors) with central necro-
sis and primary pancreatic NET (blue arrow). Same patient as > Fig. 1. b: %8Ga-DOTATATE PET/CT scan in transaxial fused image. Scan was on
02/2022 with multiple liver lesions (hot tumors) with smaller size and less central necrosis post therapy with full dose of peptide receptor radionu-
clide therapy (PRRT). The primary pancreatic NET (blue arrow) is again seen with minimally higher intensity. The overall findings are stable disease.

Same patient as > Fig. 1.
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3 06/2016 whole-body Octreoscan

| |‘s

SPECT/CT of Octreoscan of liver

» Fig. 3 a: """In-Octreoscan in whole body display. Scan was on 06/2016 without significant focal lesions (cold tumors). b: "'In-Octreoscan in
transaxial fused image focusing on liver. Scan was on same day of whole-body scan with small liver lesions but no activity above liver background

(cold tumors).

CT of abdomen on 12/2016

CT of abdomen/liver with progression in 11/2017

> Fig. 4 a: CT of abdomen in trans axial display. Scan was on 12/2016 with more small liver lesions. Same patient as > Fig. 3 and therapy changed
from temozolomide/capecitabine to carboplatin/etoposide. b: CT of abdomen in trans axial display. Scan was on 11/2017. There are more liver
lesions (in large circle in center, also posteriorly) and new peritoneal metastases (in smaller circle to right). The overall findings were suggestive of

disease progression.

studies demonstrating ORRs of <10 %. In the phase Il KEYNOTE-158
study which investigated the safety and efficacy of pembrolizum-
ab across multiple malignancies, the drug’s utility in 107 patients
with advanced, well-differentiated NETs was also evaluated [50].
After a median follow-up of 24.2 months, ORR was seen in 3.7 %
(4/107) patients, with partial response (PR) noted in all four and
with none achieving complete response (CR). Moreover, all four pa-
tients had no PD-L1 expression in the NETs while 17 patients from
the remainder of the study population demonstrated positive

PD-L1 expression, therefore suggesting poor correlation between
PD-L1 tumor expression and likelihood of response to ICI [63]. Sim-
ilarly, in another study evaluating pembrolizumab therapy in 29
patients with G3 extrapulmonary NETs, ORR was seen in one (3.4 %)
patient with esophageal NEC [51]. Moreover, there were no differ-
ences in the disease control rate, overall survival (OS), or progres-
sion-free survival (PFS) between patients with PD-L1-positive and
PD-L1-negative NETs. While there are individual reports of combi-
nation of PD-1 therapy and chemotherapy being effective in tum-
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ors with high tumor mutational burden (TMB) such as pancreatic
NECs, a strong correlation between TMB and efficacy of ICI therapy
in cancers in general has not been identified to date [64]. In a ret-
rospective study on LCNEC patients, those on anti-PD1 therapy with
dense tumoral CD8 + T lymphocyte infiltration (>38 cells/mm?)
had a significantly better PFS and OS than patients with lower infil-
tration density [60]. In this study, 90 % of the 13 patients who re-
ceived anti-PD1 therapy had PD-L1-negative tumors, yet they re-
sponded to anti-PD1 therapy. Moreover, three patients with a path-
ogenic TP53 variant along with other co-occurring variants such as
PIK3CA and RBT responded well to anti-PD1 therapy, suggesting a
probable correlation between presence of certain pathogenic gene
variants and response to ICl therapy.

The PD1 inhibitor spartalizumab was utilized to treat 95 patients
with thoracic and GEP-NETs as well as 21 GEP-NECs in a phase Il
study [47]. After a median follow-up of 13.4 months, the ORR in
the NET group was 7.4 % in the NET patients and 4.8 % in the NEC
patients, while the median PFS was 3.8 months and 1.8 months in
the NET and NEC groups, respectively, with the 12-month
Kaplan-Meier estimated median PFS rate of 19.5 % in the NET group
and 0% in the NEC group. The therapy was also associated with SAEs
in close to half the patients in both NET and NEC cohorts, and a
quality-of-life assessment did not reveal any meaningful improve-
ment from the PD1 therapy in the global health status or function-
al scales in these patients. Forty patients with recurrent/metastat-
ic GEP and non-GEP-NETs were treated with the PD1 inhibitor tori-
palimabin a phase Ib study [49]. The ORR was 20 % and the disease
control rate (DCR) was 35 %, with a median duration of response of
15.2 months. Patients with high PD-L1 expression (>10%) and a
high TMB had better ORRs compared to patients with low PD-L1
expression and a low TMB. One patient who responded to therapy
had multiple genomic rearrangement with high prediction score
for neoantigens, but interestingly had low TMB, negative PD-L1 ex-
pression, and without microsatellite instability. SAEs were noted
in<30% of the patients.

PD-L1 inhibitor monotherapy has also been evaluated with ave-
lumab, and atezolizumab [53, 56,61, 62, 65], although most data
are from retrospective studies in which other ICls including PD1 in-
hibitors or combination ICl therapies were utilized (> Table 1). In a
phase Il study, combination therapy with the PD-L1 inhibitor ate-
zolizumab + bevacizumab in 40 pancreatic and extrapancreatic
NETs led to an ORR of 20 and 15 %, and a median PFS of 19.6 months
and 14.9 months, respectively [66]. A combination of PD1 or
PD-L1+CTLA4 inhibitors have also been utilized in various studies,
including the combinations of nivolumab and ipilimumab [48, 57],
pembrolizumab and ipilimumab [61, 62, 65], and durvalumab and
tremelimumab [58]. The ORRs with combination therapies have
been better compared to monotherapy with PD1 inhibitors, rang-
ing from 24 % to 33 %, with a comparable AE profile (> Table 1).

A meta-analysis on 14 phase I/ll studies was performed by Bon-
giovanni et al. to evaluate the safety and efficacy of ICI therapy in
NETs [67]. The efficacy data were available from 636 patients. The
pooled ORRwas 10% (95 % Cl: 6-15%; 12=67 %), witha DCR of 42 %
(95 % Cl: 28-56 %, 12=93 %). The highest ORR was noted with tori-
palimab, and combination regimens of PD1 + CTLA4 inhibitors
(nivolumab +ipilimumab) or PD-L1 + VEGF inhibitors (atezolizum-
ab +bevacizumab) were superior compared to PD1 inhibitor mon-
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otherapy. The DCR was better for G1/G2 NETs as compared to G3
NETs and NECs, but the DCR was not significantly different based
on the site of origin of the tumors. Most common AEs noted were
dermatologic conditions (rash, pruritis, dermatitis), fatigue, gas-
trointestinal symptoms, transaminase elevation, hypothyroidism,
and loss of appetite. SAEs were noted at a rate of 22 % for treat-
ment-related AEs and 18 % for immune-related AEs. The median
PFSwas 4.1 months (95% Cl: 2.6-5.4;12=96 %), and the median OS
was 11 months (95% Cl: 4.8-21.1; 12=98 %). A sub-analysis of stud-
iesin which PD-L1 expression available [49, 50, 52, 58] revealed that
patients with tumors positive for PD-L1 expression had a better
ORR compared to patients without PD-L1 tumor expression. An-
other meta-analysis by Park et al. compared 10 studies comprised
of 464 patients with advanced/metastatic NETs [68]. The pooled
ORRwas 15.5% (95 % Cl: 9.5-24.3 %;12=72%). The ORR was better
with thoracic NETs (24.7 %) compared to GEP-NETs (9.5 %). Inter-
estingly, poorly-differentiated NET group had better ORR (22.7 %)
compared to the well-differentiated NET group (10.4 %), with the
probable explanation being that the poorly-differentiated NETs may
have a higher PD-L1 expression and a higher TMB [69]. The medi-
an PFS was 3.8 months (95 % Cl: 3.5-4.1), and the median OS was
22.7 months (95 % Cl: 20.1-25.9), with the shortest median OS
noted with poorly-differentiated GEP-NETs and longest OS with
well-differentiated thoracic NETs. Similar to the first meta-analysis,
combination therapy resulted in better ORRs compared to mono-
therapy. The differences noted with ORRs between this meta-anal-
ysis and the meta-analysis by Bongiovanni et al. was due to differ-
ent set of studies included: the Park et al. study included only full-
length studies (phase I/1l studies and retrospective studies), while
the Bongiovanni et al. study included phase I/1l full-length studies
and abstracts but did not include retrospective studies. In compar-
ison, the ORRs and survival outcomes, and AE profiles have been
somewhat better with some of the other established systemic ther-
apies for NETs as summarized in » Table 2. However, it must be
noted that these are not head-to-head comparisons, and the type
of study is not the same across the articles described in » Table 2.

Medullary thyroid cancer

While surgery and systemic chemotherapy were the main treat-
ment options available for MTC for several years [11], the manage-
ment of advanced/metastatic MTC has dramatically changed over
the past decade, mainly due to the advent of the tyrosine kinase
inhibitors (TKIs) such as vandetanib and cabozantinib [70,71], and
of selective rearranged during transfection (RET) inhibitors, includ-
ing selpercatinib and pralsetinib [72, 73]. As with other NETs, sev-
eral studies have utilized PRRT to treat MTC with reasonable suc-
cess [74-79]. As with other NETSs, the utility of ICl in MTC is yet to
be thoroughly investigated.

The immune landscape of MTC has been described in a few stud-
ies, although the implications of the findings in the clinical man-
agement of these tumors needs to be established. PD1/PD-L1 ex-
pression has been identified in certain MTC post-surgical speci-
mens, and PD-L1 expression in the tumor cells and the associated
immune cells has been shown to be associated with distant metas-
tases at the time of surgery and co-expression of PD1/PD-L1 has
shown significant association with advanced stages (lll/1V), worse
0S, but not with worse PFS [80]. Other immune checkpoint-relat-
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ed candidate antigens such as CD276 have been also identified to
be overexpressed in MTC cells as compared to normal thyroid tis-
sue [81]. In a study evaluating tissue microarray expression of im-
mune inhibitory receptors expression comprised of CTLA-4, PD1,
TIM-3, LAG-3, and TIGIT in MTC surgical specimens from 200 pa-
tients, positive expression was identified at variable levels, ranging
from 48 % of patients for TIM-3 positivity to 3 % for LAG-3 and TIGIT
[82]. In this study, CTLA-expression, PD-1/PD-L1 co-expression,
and TIM-3 expression were associated with worse recurrence-free
survival, and moderate to strong CTLA-4, PD-1, or PD-L1 expres-
sion along with consistent TIM-3 expression was noted in MTC of
patients who developed advanced disease. Currently, data on ICl
therapy in thyroid cancer, including MTC, is extremely sparse
[83, 84]. In one report, a patient with advanced, metastatic MTC
demonstrated substantial improvement in calcitonin doubling time
and tumor burden following yeast-CEA vaccine, followed by sur-
gery and then ICl therapy with avelumab under a phase | trial [85].
Further studies are needed to establish the role of ICl therapy in
MTC. For instance, a phase 2 clinical trial (NCT03246958) is evalu-
ating the safety and efficacy of the combination of nivolumab and
ipilimumab in the treatment of aggressive thyroid cancer, includ-
ing cohorts of MTC.

Pheochromocytomas and paragangliomas

Current standard of care of PPGL includes surgery, locoregional in-
terventions such as radiofrequency or cryoablation and chemoem-
bolization, temozolomide, TKIs, and PRRT [17, 86]. PPGLs with
germline pathogenic variants can have varying biochemical and
phenotypic presentations (clusters 1, 2, and 3), and the current
management of PPGL has been steering towards personalized|tar-
geted therapy, forinstance, hypoxia pathway-targeting agents for
treating cluster 1 tumors and TKis for treating cluster 2 tumors [86].
Similar to MTC and other NETs, the utility of ICI therapy has been
understudied in PPGL. In a phase Il study, pembrolizumab was uti-
lized in 11 patients with progressive, metastatic PPGL, eight of
whom at least had prior surgery with or without other systemic
therapy (> Table 1) [87]. The primary endpoint of non-progression
at 27 weeks was observed in four patients, while the ORR was 9 %,
and a clinical benefit rate of 73 %. Grade 3 adverse events were
noted in four patients while none had Grade 4 or 5 adverse events.
However, the favorable treatment responses did not correlate with
primary tumor PD-L1 positivity, hormonal status, hereditary syn-
drome status, or infiltrating mononuclear cells in the primary
tumor. A combination therapy with ipilimumab and nivolumab
used off-label in a 60-year-old patient with sporadic, metastatic,
inoperable pheochromocytoma resulted in substantial reduction
in tumor burden after close to 20 months of therapy [88].

Pituitary tumors

Pituitary tumors are considered as a subtype of NETs and the po-
tential for the utility of IClin the treatment of these tumors has re-
cently gained some interest [89-91]. While most pituitary tumors
are adenomas and can be cured with surgery, the gross tumor re-
section rate is about 66.4-74 % [92]. Also, the so-called refractory
adenomas which tend to be more invasive with a high Ki-67 index
as well as pituitary carcinomas can cause substantial morbidity and
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mortality and are challenging to treat [93]. Temozolomide has been
used to treat aggressive forms of pituitary tumors but only about
60 % of the tumors respond to this treatment [91]. Theimmune cell
population seems to be different between normal pituitary gland
and pituitary adenomas, and among different pituitary adenomas,
3 distinctimmunophenotypic clusters of pituitary adenomas have
been identified with each cluster comprising a different set of im-
mune checkpoint molecular expression [94]. Later studies have
also identified increased PD-L1 expression in pituitary tumors in-
vading the cavernous sinus and in functional and more aggressive
adenomas [89,95]. Anti-PD-L1 therapy has demonstrated reduc-
tion in tumor growth and in ACTH levels, and improved survival in
murine models of Cushing’s disease [96]. In a recent case report,
ipilimumab and nivolumab combination therapy followed by main-
tenance therapy with nivolumab in a 41-year-old patient with re-
current, invasive adrenocorticotropic hormone (ACTH)-producing
pituitary adenoma (refractory to bilateral adrenalectomy and te-
mozolomide therapy) led to biochemical response with reduction
in ACTH and cortisol levels, and radiographically stable disease 12
months into ICl therapy [97]. In another report, immunotherapy
with autoantigens along with a T helper 1 adjuvant for 24 consec-
utive weeks resulted in substantial biochemical, radiographic, and
clinical response in a 31-year-old lady with refractory macroprol-
actinoma [98]. Further studies on a larger cohort are needed to es-
tablish the role of ICls and other immunotherapies in the manage-
ment of aggressive pituitary adenomas and pituitary carcinomas.

Merkel cell carcinoma

MCC is a rare, aggressive form of non-melanoma skin cancer pre-
dominantly occurring in the sun-exposed areas in older, fair-
skinned individuals [99]. Due to its immunogenic nature, these tu-
mors can be targeted with ICls. While CTLA-4 inhibitors are not
well-studied in this condition, the PD-L1 inhibitor, avelumab and
PD-1 inhibitors pembrolizumab and nivolumab have been studied
in advanced MCCs in various trials, including KEYNOTE-017, Check-
Mate 358, and JAVELIN Merkel 200-part A and part B trials [100-
103] (> Table 1). ICl therapy in MCC s associated with higher ORRs
(31.8-62.1%) compared to conventional NETs [101-103], and a
neoadjuvant approach has also been utilized with tumor regression
in close to 50 % of the patients [100]. Further optimization of ICI-
based treatment is being evaluated in early phase trials targeting
other immune checkpoint markers such as TIM-3, LAG-3, TIGIT in
advanced cancers [99].

Summary of the current knowledge

In general, the role of IClin the treatment of NETs has not been
well-established, and the currently available data demonstrate only
modest efficacy. Combination ICl therapy is superior to monother-
apy. Some of the factors that determine favorable response to ICI
therapy include aggressive tumor biology, high TMB, higher T lym-
phocyte and otherinflammatory cell infiltration into the tumor mi-
croenvironment, and presence of certain additional pathogenic
gene variants. On the other hand, the extent of PD-L1 expression
has not shown clear correlation with response to ICl therapy. The
NCCN 2021 guidelines recommend the use of pembrolizumab as
a monotherapy as a category 2B recommendation (low-level evi-
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dence and NCCN consensus that a therapy is appropriate) in pa-
tients with NETs harboring high-TMB (> 10 mutations/Megabase)
as confirmed by an FDA-approved test, that have progressed on
prior therapies and there are no alternative satisfactory therapies
available [20]. The combination of ipilimumab and nivolumab is
also recommended (category 2B) by the NCCN guidelines for pa-
tients with locally advanced or metastatic NETs with unfavorable
tumor biology as an alternative to clinical trials [20]. The NANETS
2021 guidelines comment on ICl therapy particularly for pancreat-
ic NETs and endorse the minimal treatment benefit noted in NET
patients with single agent PD-1/PD-L1 therapy and recommend
the use ofimmunotherapy for pancreatic NECs in a clinical trial set-
ting [36, 104]. Similarly, NANETS guidelines on PPGL also acknowl-
edge the lack of knowledge on the mechanisms that determine fa-
vorable outcomes with ICI therapy in PPGL and suggest the use of
ICl to be limited to clinical trials [17,36].

Future directions

In addition to ICI therapy per se, targeting additional immunothera-
peutic mechanisms may enhance the anti-tumor activity of ICls, es-
peciallyin NETs which are particularly indolent and relatively less sen-
sitive to ICl therapy compared to other tumors. Some of these targets
include alteration of the tumor microenvironment and tumor vascu-
lature, T cell homing, prevention of T cell exhaustion, enhancement
of metabolic pathways or cytokines that sustain a robust CD8 +lym-
phocyte response, and vaccination of a given patient with the anti-
gens derived from their tumor cells [105]. These strategies may hold
potential as combination therapies along with ICls. The intratumoral
heterogeneity exhibited at cellular and genomic levels also contrib-
utes towards variable immune response towards these tumors and
the relative resistance towards several targeted therapies and may
partly explain the biology of treatment-refractory NETs [105, 106].
Understanding the immune-microenvironmental mechanisms driv-
ing the intratumoral heterogeneity and identifying potential treat-
ment targets may allow for further optimization of immunotherapy
in NETs. Some progress has been made in the description of the NET
immune-microenvironment. The immune-microenvironment seems
to be higher in pancreatic NETs compared to midgut NETs but with-
out any clear association with expression of immune checkpoint
markers or mutational profile [107], and a higher density of T cell in-
filtration in pancreatic NET primary tumors has been associated with
a higher recurrence-free survival meanwhile a high regulatory T cell
infiltration has been associated with a lower OS among patients with
liver NET metastases [108].

In general, NETs are described as having a ‘cold’ tumor microen-
vironment which is thought to be the reason for the modest effica-
cy of ICl therapy. One of the main areas of further research lies in
exploring the mechanisms that can turn these immunologically
‘cold’ tumors into ‘hot’ (more immunogenic) tumors. The three
major immunologically ‘cold’ cancer phenotypes described in-
clude: 1) the immune desert phenotype which comprises tumors
that lack T lymphocyte priming, suboptimal antigen processing
and presentation, and lack of antigen-presenting cell - T lympho-
cyte interaction, 2) the immune excluded phenotype in which the
T lymphocytes do not effectively infiltrate the tumor, and 3) the
immune inflamed phenotype in which the T lymphocytes infiltrate
the tumor but these cells are rendered ineffective either due to T
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cell exhaustion or due to checkpoint activation [109]. Several
mechanisms underlie the ‘cold’ tumor phenotype, including low
multiple histocompatibility complex | (MHCI) expression, low TMB,
activation of certain oncogenic pathways, epigenetic modifica-
tions, altered tumor vasculature, tumor hypoxia, tumor microbi-
ome, immunosuppressive tumor microenvironment, among oth-
ers [109]. The molecular landscape of both sporadic and familial
NETs demonstrates involvement of protooncogenes as well as
tumor suppressor genes, several of which are involved in the de-
velopment of one or more of the above-described immune evasion
phenotypes of tumors [109, 110]. Certain molecular phenotypes
such as metastasis-like primary-1 (MLP-1) subtype of pancreatic
NETs are associated with worse prognosis, increased levels of im-
mune-related genes expression including T cell-inflamed-related
genes, immune checkpoint antigens, and other immune evasion
mechanisms, and such enhanced immune-related gene expres-
sions are associated with hypoxia and necroptosis in pancreatic
NETs [111]. Several approaches have been attempted to convert
the immunologically ‘cold’ tumors into ‘hot’ tumors. Some of these
mechanisms include promoting T cell priming (immune adjuvants,
oncolytic viruses, chemotherapy/radiation mediating an ‘abscopal
effect’, local ablative therapies), antigen-specific T cell expansion
(adoptive cellular therapy such as CAR-T cells, anticancer vaccines),
and improving T cell trafficking and infiltration (oncogenic pathway
inhibitors, epigenetic modifier inhibitors, antiangiogenic therapies,
TGFBinhibitors, CXCR4 inhibitors) [112-121]. Some of these mech-
anisms may hold the key to enhancing the response of NETs to ICl
or other forms of immunotherapy (> Fig. 5). Further details on the
mechanisms on converting immunologically ‘cold’ into ‘hot’ tum-
ors are described elsewhere [109].

Apart from the canonical targets of CTLA-4, PD-1, or PD-L1, tar-
geting other components related to immunoregulation may serve
as alternative therapy or augment the clinical efficacy of ICls. For
instance, targeting indoleamine 2,3-dioxygenase, an enzyme that
plays a role in immune evasion in cancers may potentiate the ef-
fects of ICls [122]. Other proteins involved in immune checkpoint
cascade, including TIM-3, LAG-3, and TIGIL also serve as potential
targets for novel therapy in the management of NETs [82, 99].
Other strategies such as targeted arterial injection of recombinant
viruses or vaccination against anti-apoptotic molecules such as sur-
viving combined with immunogenic adjuvants are being evaluat-
ed for the treatment of NETs [122]. It is possible that those NETs
that are deemed unlikely to respond to PRRT due to lack of avidity
on diagnostic SSA-based imaging, may in fact be candidates for ICl
therapy. The reason for this “flip-flop’ phenomenon could be be-
cause the less-avid NET lesions tend to be dedifferentiated, which
may in turn translate to increased TMB and immunogenicity lead-
ing to increased susceptibility towards ICl therapy. This mechanism
is probably analogous to the flip-flop phenomenon observed with
differentiated thyroid cancers, in which tumors that are radioiodine
non-avid tend to be avid on fluorodeoxyglucose (FDG)-PET/CT scan
[123]. Inthis context, itis important to be aware of the distribution
of SSTRs 1-5 in normal human tissue and a normative database
[124]. The expression profile of neuropeptide receptors can vary
across different types of immune cells [125]. Human monocytes
express SSTR2A and SSTR1 when induced to differentiate into mac-
rophages or dendritic cells. NETs can be infiltrated by lymphocytes,
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as shown by immunohistochemistry for CD3, CD4, and CD8. Heav-
ier tumor infiltration by T regulatory cells is associated with weak-
er anti-tumor immunity [126-128]. A high-density SSTR expres-
sion occurs not only on tumor cells but also on peritumoral vessels,
activated lymphocytes and monocytes. Somatostatin can inhibit
inflammation both locally and distant from the site of release [129].
Certain drugs, for instance, valproic acid which can inhibit the his-
tone deacetylase, can elicit an upregulation of SSTR2 mRNA and
protein expression in human NET cells [130, 131]. Glucocorticoids
are anti-inflammatory and in patients with ectopic ACTH secretion
and cortisol excess the use of selective non-steroidal glucocorti-
coid receptor antagonist/modulator mifepristone and relacorilant
can lead to an upregulation of SSTR2 expression in ACTH-secreting
neuroendocrine tumors [132]. Inhibition of proprotein convertase
subtilisin/kexin type 9 (PCSK9) can lead to increased MHC | expres-
sion on tumor cells leading to augmented intratumoral CD8 + lym-
phocyte infiltration [133]. Whether these mechanisms would turn
“cold” NETs into “hot” tumors with regards to improving T-cell in-
filtration and thereby making such NET more responsive to ICl ther-
apy needs to be shown.

Studies in mouse models have revealed that the effects of ICls
are potentially modulated by the gut microbiome, which is in part
mediated through certain microbiome-derived metabolites such
asinositol [134]. Studies of the human microbiome and its impact
on the efficacy of immunotherapy on NETs needs further investi-
gation. Although ICl therapy is technically effective in treating tu-
mors with high-TMB [68], particularly with NECs [135], the cut-offs
associated with TMBs have thus far been inconsistent with the pre-
dictability of response to ICI therapy, and on some other cancers,
ICl therapy has not resulted in improved ORR among patients with
high-TMB as compared to patients with low-TMB [64]. The current
FDA-approved indication for the use of pembrolizumab on the basis
of high-TMB may be too broad and further tailoring of indications
based on other factors such as environmental carcinogen exposure
are being suggested for consideration [136].
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Several clinical trials are ongoing to investigate the role of ICl
therapy (clinicaltrials.gov), particularly in conjunction with other
therapies such as VEGF-inhibitors (NCT05000294), TKls
(NCT04197310), platinum-based chemotherapy (NCT03980925),
stereotactic radiation (NCT03110978), and '77Lu-DOTATATE
(NCT04525638), for the treatment of NETs and NECs. Deciphering
the molecular mechanisms and extraneous factors that modulate
theimmunogenicity of NETs, and further research on systemic ther-
apies or other agents that could potentially enhance the effects of
ICls hold the key to progressing the field of immunotherapy in the
management of NETs.
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