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Introduction
The incidence of neuroendocrine tumors (NETs) is increasing and 
is estimated to be around 1.01–5.25 cases per 100 000 population 
based on data from the United States, Japan, and European regis-

tries [1–3]. Several forms of locoregional and systemic medical and 
surgical therapies have been used with varying efficacies. Immu-
notherapy, particularly with immune checkpoint inhibitors (ICIs) 
has only recently emerged as one of the options for systemic ther-
apy for NETs. To date, the role of ICI therapy and other forms of im-
munotherapy in the management of NETs is not well established. 
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Abstr act

Neuroendocrine tumors (NETs) occur in various regions of the 
body and present with complex clinical and biochemical phe-
notypes. The molecular underpinnings that give rise to such 
varied manifestations have not been completely deciphered. 
The management of neuroendocrine tumors (NETs) involves 
surgery, locoregional therapy, and/or systemic therapy. Sever-
al forms of systemic therapy, including platinum-based chemo-
therapy, temozolomide/capecitabine, tyrosine kinase inhibi-
tors, mTOR inhibitors, and peptide receptor radionuclide 
therapy have been extensively studied and implemented in the 
treatment of NETs. However, the potential of immune check-
point inhibitor (ICI) therapy as an option in the management 
of NETs has only recently garnered attention. Till date, it is not 
clear whether ICI therapy holds any distinctive advantage in 
terms of efficacy or safety when compared to other available 
systemic therapies for NETs. Identifying the characteristics of 
NETs that would make them (better) respond to ICIs has been 
challenging. This review provides a summary of the current 
evidence on the value of ICI therapy in the management of ICIs 
and discusses the potential areas for future research.
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The various molecular and cellular mechanisms as well as the tumor 
microenvironmental factors that may regulate the response of NETs 
to ICI therapy are yet to be completely understood. In this review, 
we discuss the current knowledge on the efficacy of ICI therapy in 
the treatment of NETs and discuss the potential areas for future re-
search.

Neuroendocrine tumor biology and current standard 
of care
NETs are benign or malignant tumors that demonstrate variable 
rates of growth and have the ability to store and secrete biologi-
cally active peptides and amine compounds [4]. These tumors arise 
from the so-called diffuse neuroendocrine system of the body, the 
embryologic origins of which thought to be either from the neural 
crest or from the gut endoderm [5]. NETs arise from the various 
neuroendocrine cell types, including the ganglionic cells of the 
nervous system, paraganglionic chromaffin cells, pancreatic islets, 
adrenal medulla, and thyroid c-cells [5]. These tumors also demon-
strate immunohistochemical reactivity to neuronal markers such 
as chromogranin A, synaptophysin, or neuron-specific enolase [4]. 
NETs can occur in various regions of the body, including but not 
limited to the gastrointestinal tract, pancreas, lungs, bronchus, thy-
mus, skin, cervix, prostate, and the thyroid [6–10]. While most of 
these tumors are slow growing, some tumors such as high-grade 
NETs, neuroendocrine carcinomas (NECs), medullary thyroid can-
cer (MTC), Merkel cell carcinoma (MCC), and certain forms of phe-
ochromocytomas and paragangliomas (PPGLs) tend to be more 
aggressive and can metastasize to distant sites [6, 11, 12].

As per the 2019 World Health Organization guidelines, NETs are 
classified into different grades depending on the mitotic rate or 
Ki-67 proliferative index: G1 [ < 2 mitoses/10 high power field 
(HPF), < 3 % Ki-67 index], G2 (2–20 mitoses/10 HPF, 3–20 % Ki-67 
index), and G3 ( > 20 mitoses/10 HPF, > 20 % Ki-67 index) [13]. NECs 
are now a distinct subtype from NETs and are further classified into 
small-cell NECs (SCNECs) and large-cell NECs (LCNECs). While both 
G3 NETs and NECs have a high mitotic rate/Ki-67 index, the main 
difference lies in their differentiation and clinical response to treat-
ment: NECs tend to be poorly differentiated and respond to plati-
num-based chemotherapy while G3 NETs are well-differentiated 
and relatively resistant to platinum-based chemotherapy but can 
be less aggressive than NECs [13, 14]. Apart from these, mixed NET-
non-NET neoplasms are also a part of this classification where the 
differentiation and histopathology can be variable. The course of 
management of NETs is determined by the anatomical location of 
the primary tumor, biochemical phenotype, histological grade of 
the tumor, and staging of the disease [12, 15–17]. Surgery is the 
preferred modality of treatment for localized non-metastatic NETs, 
and a cytoreductive surgical approach could be utilized for the 
treatment of metastatic disease [18]. Locoregional therapies such 
as radiofrequency ablation, transarterial embolization, stereotac-
tic radiotherapy, and chemoembolization are also feasible options 
for liver metastases, as well as palliative radiation to bone metas-
tases [18–20].

Such a multimodality approach is displayed in the illustrative 
history of a 48-year-old man who was found to have an elevated 
serum calcium up to 14 mg/dl (normal, 8.6–10.0), alkaline phos-
phatase and gamma glutamyl transferase during routine blood 

work in 2018. Computed tomography (CT) of the abdomen re-
vealed a pancreatic mass and liver tumors. Biopsy of the pancreat-
ic mass showed a low-grade neuroendocrine tumor. Hypercalce-
mia was mediated by parathyroid hormone-related peptide. He re-
ceived monthly long-acting octreotide (Sandostatin LAR) 30 mg 
and was started on denosumab and switched to zoledronic acid 
with slight decline but without normalization of serum calcium. In 
3/2020, he underwent transarterial chemoembolization of multi-
ple metastases within the right and left hepatic lobe. Hypercalce-
mia continued. He then had a gallium-68 (68Ga)-DOTATATE posi-
tron emission tomography computed tomography (PET/CT) imag-
ing (▶ Fig. 1a, ▶ 2a) and underwent therapy with 4 cycles of 
lutetium-177 (177Lu)-DOTATATE therapy in 09/2020, 11/2020, 
1/2021, 3/2021. The lesions were stable on 02/2022 68Ga-DO-
TATATE PET/CT imaging (▶Fig. 1b, ▶2b). Several months later his 
serum Ca has dropped but remains above normal range and in 
06/2022 was measured at 10.6 mg/dl (8.6–10.0) while continuing 
monthly Sandostatin LAR 30 mg. Zoledronic acid was stopped in 
June 2021.

In patients with metastatic disease but with low tumor burden, 
frequent follow-up with or without treatment with somatostatin 
analogs (SSAs) such as octreotide [21, 22], and lanreotide [23, 24], 
especially in patients with somatostatin receptor-positive (SSTR + ) 
NETs and/or hormonally active NETs such as carcinoids, insulino-
mas, glucagonomas, and others [20] is needed. Several systemic 
therapy options are available for the treatment of advanced, met-
astatic NETs [6, 12, 17, 20, 25]. Some of the systemic therapy op-
tions include mechanistic target of rapamycin (mTOR) inhibitor 
everolimus [26, 27], tyrosine kinas inhibitor (TKI) sunitinib [28, 29], 
vascular endothelial growth factor (VEGF) inhibitor bevacizumab 
[30], interferon α [30, 31], and for the treatment of SSTR + NETs, 

▶Fig. 1	 a: 68Ga-DOTATATE PET/CT scan in Maximum Intensity 
Projection (MIP) display. Scan was on 09/2020 with multiple liver 
lesions (hot tumors) and primary pancreatic NET (blue arrow).  
b: 68Ga-DOTATATE PET/CT scan in Maximum Intensity Projection 
(MIP) display. Scan was on 02/2022 with multiple liver lesions again 
visualized (hot tumors) and primary pancreatic NET (blue arrow). 
The size is smaller for some of the liver lesions.
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peptide receptor radionuclide therapy (PRRT) with radiolabeled 
SSAs such as lutetium-177 (177Lu)-DOTA-Tyr3-octreotate (DO-
TATATE) [32]. A combination of these therapies is also utilized for 
the treatment of NETs [27, 30, 32]. Chemotherapeutic regimens 
are also utilized in the treatment of more aggressive forms of NETs/
neuroendocrine carcinomas (NECs), some of which include cispla-
tin/etoposide [33], carboplatin/etoposide [20], oxaliplatin-based 
therapy (FOLFOX, CAPEOX) [20], irinotecan-based therapy (cispla-
tin/etoposide, FOLFIRI, FOLFIRINOX) [20], and temozolomide, ei-
ther as a single agent or with capecitabine [34, 35].

Such a treatment approach including immunotherapy is shown 
in the history of a 43-year-old man who presented with abdominal 
pain due to small bowel obstruction in 2015. He was previously 
worked up for irritable bowel syndrome in 2013 and had ongoing 
diarrhea before 2013. After small bowel resection and ongoing ab-
dominal discomfort and diarrhea, he presented to a NET center in 
2016 and underwent an indium-111 (111In)-octreoscan showing 
evidence of mesenteric lymphadenopathy ▶Fig. 3a, b). Bulky mes-
enteric lymph nodes, small bowel containing the primary G3 NET 
(Ki-67 index 25 %), and the gallbladder were resected, and month-
ly octreotide LAR was started in an adjuvant setting. Four months 
later, imaging studies suggested tumor recurrence in the liver and 
peritoneum and the patient started systemic therapy with capecit-
abine and temozolomide, however, developed progressive disease 
(▶Fig. 4a). Therapy was changed to carboplatin/etoposide for 8 
months which was ineffective, and then the patient received 3 cy-
cles of pembrolizumab, unfortunately with disease progression 
(▶Fig. 4b).

A meta-iodobenzylguanidine (MIBG) scan in 6/2016 was not avid 
for liver lesions that were seen on magnetic resonance imaging 
(MRI). Molecular profiling did not find disease associated mutations 
or variants of uncertain significance. Microsatellite instability (MSI) 
testing with immunohistochemical stains for MLH1, MSH2, PMS2, 
and MSH6 showed continued nuclear expression of all four proteins 

in the poorly differentiated NEC, implying low probability of a MSI 
high tumor. PD-L1 expression was negative.

The National Comprehensive Cancer Network (NCCN) 2021 
guidelines endorses the use of all of these locoregional and system-
ic therapy for the management of NETs as category 2 A (low-level 
evidence and uniform NCCN consensus that a therapy is appropri-
ate) recommendations [20]. The North American Neuroendocrine 
Tumor Society (NANETS) released its compendium guidelines in 
2021 in partnership with the Commonwealth Neuroendocrine 
Tumor Research Collaboration (CommNETs) comprising Canada, 
Australia, and New Zealand, along with endorsements and updat-
ing of the 2015 European Neuroendocrine Society (ENETS) guide-
lines [36]. In the NANETS guidelines, most of these systemic ther-
apies were endorsed as grade B or C recommendations as per the 
Oxford Centre for Evidence-Based Medicine [36].

Role of immune checkpoint inhibitor therapy in 
neuroendocrine tumors
ICIs are monoclonal antibodies that target the immune co-inhibi-
tory receptors as well as their respective ligands, including pro-
grammed cell death protein-1 (PD-1), PD-ligand 1 (PD-L1), and cy-
totoxic T-lymphocyte antigen 4 (CTLA-4) [37, 38]. The efficacy of 
ICIs has been well-demonstrated in the management of various 
cancers [39–43]. In addition to these proteins, the T-cell immuno-
globulin and mucin-domain containing-3 (TIM-3), lymphocyte ac-
tivation gene-3 (LAG-3), and T-cell immunoglobulin and ITIM do-
main (TIGIT) are additional co-inhibitory proteins that could serve 
as potential targets for the next generation of ICIs [44, 45].

Several phase Ib and phase II studies as well as retrospective 
studies have evaluated the efficacy of ICIs for the treatment of a va-
riety of NETs [46–62]. A summary of data published on ICI therapy 
in NETs is provided in ▶Table 1. As evident in this table, full-length 
articles related to ICI therapy in NETs, except for MCC, have been 
published only since as recently as 2020. However, the objective 
response rates (ORR) have been low to modest, with most trial 

▶Fig. 2	 a: 68Ga-DOTATATE PET/CT scan in transaxial fused image. Scan was on 09/2020 with multiple liver lesions (hot tumors) with central necro-
sis and primary pancreatic NET (blue arrow). Same patient as ▶Fig. 1. b: 68Ga-DOTATATE PET/CT scan in transaxial fused image. Scan was on 
02/2022 with multiple liver lesions (hot tumors) with smaller size and less central necrosis post therapy with full dose of peptide receptor radionu-
clide therapy (PRRT). The primary pancreatic NET (blue arrow) is again seen with minimally higher intensity. The overall findings are stable disease. 
Same patient as ▶Fig. 1.
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studies demonstrating ORRs of < 10 %. In the phase II KEYNOTE-158 
study which investigated the safety and efficacy of pembrolizum-
ab across multiple malignancies, the drug’s utility in 107 patients 
with advanced, well-differentiated NETs was also evaluated [50]. 
After a median follow-up of 24.2 months, ORR was seen in 3.7 % 
(4/107) patients, with partial response (PR) noted in all four and 
with none achieving complete response (CR). Moreover, all four pa-
tients had no PD-L1 expression in the NETs while 17 patients from 
the remainder of the study population demonstrated positive 

PD-L1 expression, therefore suggesting poor correlation between 
PD-L1 tumor expression and likelihood of response to ICI [63]. Sim-
ilarly, in another study evaluating pembrolizumab therapy in 29 
patients with G3 extrapulmonary NETs, ORR was seen in one (3.4 %) 
patient with esophageal NEC [51]. Moreover, there were no differ-
ences in the disease control rate, overall survival (OS), or progres-
sion-free survival (PFS) between patients with PD-L1-positive and 
PD-L1-negative NETs. While there are individual reports of combi-
nation of PD-1 therapy and chemotherapy being effective in tum-

▶Fig. 3	 a: 111In-Octreoscan in whole body display. Scan was on 06/2016 without significant focal lesions (cold tumors). b: 111In-Octreoscan in 
transaxial fused image focusing on liver. Scan was on same day of whole-body scan with small liver lesions but no activity above liver background 
(cold tumors).

▶Fig. 4	 a: CT of abdomen in trans axial display. Scan was on 12/2016 with more small liver lesions. Same patient as ▶Fig. 3 and therapy changed 
from temozolomide/capecitabine to carboplatin/etoposide. b: CT of abdomen in trans axial display. Scan was on 11/2017. There are more liver 
lesions (in large circle in center, also posteriorly) and new peritoneal metastases (in smaller circle to right). The overall findings were suggestive of 
disease progression.
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ors with high tumor mutational burden (TMB) such as pancreatic 
NECs, a strong correlation between TMB and efficacy of ICI therapy 
in cancers in general has not been identified to date [64]. In a ret-
rospective study on LCNEC patients, those on anti-PD1 therapy with 
dense tumoral CD8 + T lymphocyte infiltration ( > 38 cells/mm2) 
had a significantly better PFS and OS than patients with lower infil-
tration density [60]. In this study, 90 % of the 13 patients who re-
ceived anti-PD1 therapy had PD-L1-negative tumors, yet they re-
sponded to anti-PD1 therapy. Moreover, three patients with a path-
ogenic TP53 variant along with other co-occurring variants such as 
PIK3CA and RB1 responded well to anti-PD1 therapy, suggesting a 
probable correlation between presence of certain pathogenic gene 
variants and response to ICI therapy.

The PD1 inhibitor spartalizumab was utilized to treat 95 patients 
with thoracic and GEP-NETs as well as 21 GEP-NECs in a phase II 
study [47]. After a median follow-up of 13.4 months, the ORR in 
the NET group was 7.4 % in the NET patients and 4.8 % in the NEC 
patients, while the median PFS was 3.8 months and 1.8 months in 
the NET and NEC groups, respectively, with the 12-month 
Kaplan-Meier estimated median PFS rate of 19.5 % in the NET group 
and 0 % in the NEC group. The therapy was also associated with SAEs 
in close to half the patients in both NET and NEC cohorts, and a 
quality-of-life assessment did not reveal any meaningful improve-
ment from the PD1 therapy in the global health status or function-
al scales in these patients. Forty patients with recurrent/metastat-
ic GEP and non-GEP-NETs were treated with the PD1 inhibitor tori-
palimab in a phase Ib study [49]. The ORR was 20 % and the disease 
control rate (DCR) was 35 %, with a median duration of response of 
15.2 months. Patients with high PD-L1 expression ( > 10 %) and a 
high TMB had better ORRs compared to patients with low PD-L1 
expression and a low TMB. One patient who responded to therapy 
had multiple genomic rearrangement with high prediction score 
for neoantigens, but interestingly had low TMB, negative PD-L1 ex-
pression, and without microsatellite instability. SAEs were noted 
in < 30 % of the patients.

PD-L1 inhibitor monotherapy has also been evaluated with ave-
lumab, and atezolizumab [53, 56, 61, 62, 65], although most data 
are from retrospective studies in which other ICIs including PD1 in-
hibitors or combination ICI therapies were utilized (▶Table 1). In a 
phase II study, combination therapy with the PD-L1 inhibitor ate-
zolizumab + bevacizumab in 40 pancreatic and extrapancreatic 
NETs led to an ORR of 20 and 15 %, and a median PFS of 19.6 months 
and 14.9 months, respectively [66]. A combination of PD1 or 
PD-L1 + CTLA4 inhibitors have also been utilized in various studies, 
including the combinations of nivolumab and ipilimumab [48, 57], 
pembrolizumab and ipilimumab [61, 62, 65], and durvalumab and 
tremelimumab [58]. The ORRs with combination therapies have 
been better compared to monotherapy with PD1 inhibitors, rang-
ing from 24 % to 33 %, with a comparable AE profile (▶Table 1).

A meta-analysis on 14 phase I/II studies was performed by Bon-
giovanni et al. to evaluate the safety and efficacy of ICI therapy in 
NETs [67]. The efficacy data were available from 636 patients. The 
pooled ORR was 10 % (95 % CI: 6–15 %; I2 = 67 %), with a DCR of 42 % 
(95 % CI: 28–56 %, I2 = 93 %). The highest ORR was noted with tori-
palimab, and combination regimens of PD1 + CTLA4 inhibitors 
(nivolumab + ipilimumab) or PD-L1 + VEGF inhibitors (atezolizum-
ab + bevacizumab) were superior compared to PD1 inhibitor mon-

otherapy. The DCR was better for G1/G2 NETs as compared to G3 
NETs and NECs, but the DCR was not significantly different based 
on the site of origin of the tumors. Most common AEs noted were 
dermatologic conditions (rash, pruritis, dermatitis), fatigue, gas-
trointestinal symptoms, transaminase elevation, hypothyroidism, 
and loss of appetite. SAEs were noted at a rate of 22 % for treat-
ment-related AEs and 18 % for immune-related AEs. The median 
PFS was 4.1 months (95 % CI: 2.6–5.4; I2 = 96 %), and the median OS 
was 11 months (95 % CI: 4.8–21.1; I2 = 98 %). A sub-analysis of stud-
ies in which PD-L1 expression available [49, 50, 52, 58] revealed that 
patients with tumors positive for PD-L1 expression had a better 
ORR compared to patients without PD-L1 tumor expression. An-
other meta-analysis by Park et al. compared 10 studies comprised 
of 464 patients with advanced/metastatic NETs [68]. The pooled 
ORR was 15.5 % (95 % CI: 9.5–24.3 %; I2 = 72 %). The ORR was better 
with thoracic NETs (24.7 %) compared to GEP-NETs (9.5 %). Inter-
estingly, poorly-differentiated NET group had better ORR (22.7 %) 
compared to the well-differentiated NET group (10.4 %), with the 
probable explanation being that the poorly-differentiated NETs may 
have a higher PD-L1 expression and a higher TMB [69]. The medi-
an PFS was 3.8 months (95 % CI: 3.5–4.1), and the median OS was 
22.7 months (95 % CI: 20.1–25.9), with the shortest median OS 
noted with poorly-differentiated GEP-NETs and longest OS with 
well-differentiated thoracic NETs. Similar to the first meta-analysis, 
combination therapy resulted in better ORRs compared to mono-
therapy. The differences noted with ORRs between this meta-anal-
ysis and the meta-analysis by Bongiovanni et al. was due to differ-
ent set of studies included: the Park et al. study included only full-
length studies (phase I/II studies and retrospective studies), while 
the Bongiovanni et al. study included phase I/II full-length studies 
and abstracts but did not include retrospective studies. In compar-
ison, the ORRs and survival outcomes, and AE profiles have been 
somewhat better with some of the other established systemic ther-
apies for NETs as summarized in ▶Table 2. However, it must be 
noted that these are not head-to-head comparisons, and the type 
of study is not the same across the articles described in ▶Table 2.

Medullary thyroid cancer
While surgery and systemic chemotherapy were the main treat-
ment options available for MTC for several years [11], the manage-
ment of advanced/metastatic MTC has dramatically changed over 
the past decade, mainly due to the advent of the tyrosine kinase 
inhibitors (TKIs) such as vandetanib and cabozantinib [70, 71], and 
of selective rearranged during transfection (RET) inhibitors, includ-
ing selpercatinib and pralsetinib [72, 73]. As with other NETs, sev-
eral studies have utilized PRRT to treat MTC with reasonable suc-
cess [74–79]. As with other NETs, the utility of ICI in MTC is yet to 
be thoroughly investigated.

The immune landscape of MTC has been described in a few stud-
ies, although the implications of the findings in the clinical man-
agement of these tumors needs to be established. PD1/PD-L1 ex-
pression has been identified in certain MTC post-surgical speci-
mens, and PD-L1 expression in the tumor cells and the associated 
immune cells has been shown to be associated with distant metas-
tases at the time of surgery and co-expression of PD1/PD-L1 has 
shown significant association with advanced stages (III/IV), worse 
OS, but not with worse PFS [80]. Other immune checkpoint-relat-
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ed candidate antigens such as CD276 have been also identified to 
be overexpressed in MTC cells as compared to normal thyroid tis-
sue [81]. In a study evaluating tissue microarray expression of im-
mune inhibitory receptors expression comprised of CTLA-4, PD1, 
TIM-3, LAG-3, and TIGIT in MTC surgical specimens from 200 pa-
tients, positive expression was identified at variable levels, ranging 
from 48 % of patients for TIM-3 positivity to 3 % for LAG-3 and TIGIT 
[82]. In this study, CTLA-expression, PD-1/PD-L1 co-expression, 
and TIM-3 expression were associated with worse recurrence-free 
survival, and moderate to strong CTLA-4, PD-1, or PD-L1 expres-
sion along with consistent TIM-3 expression was noted in MTC of 
patients who developed advanced disease. Currently, data on ICI 
therapy in thyroid cancer, including MTC, is extremely sparse 
[83, 84]. In one report, a patient with advanced, metastatic MTC 
demonstrated substantial improvement in calcitonin doubling time 
and tumor burden following yeast-CEA vaccine, followed by sur-
gery and then ICI therapy with avelumab under a phase I trial [85]. 
Further studies are needed to establish the role of ICI therapy in 
MTC. For instance, a phase 2 clinical trial (NCT03246958) is evalu-
ating the safety and efficacy of the combination of nivolumab and 
ipilimumab in the treatment of aggressive thyroid cancer, includ-
ing cohorts of MTC.

Pheochromocytomas and paragangliomas
Current standard of care of PPGL includes surgery, locoregional in-
terventions such as radiofrequency or cryoablation and chemoem-
bolization, temozolomide, TKIs, and PRRT [17, 86]. PPGLs with 
germline pathogenic variants can have varying biochemical and 
phenotypic presentations (clusters 1, 2, and 3), and the current 
management of PPGL has been steering towards personalized/tar-
geted therapy, for instance, hypoxia pathway-targeting agents for 
treating cluster 1 tumors and TKIs for treating cluster 2 tumors [86]. 
Similar to MTC and other NETs, the utility of ICI therapy has been 
understudied in PPGL. In a phase II study, pembrolizumab was uti-
lized in 11 patients with progressive, metastatic PPGL, eight of 
whom at least had prior surgery with or without other systemic 
therapy (▶Table 1) [87]. The primary endpoint of non-progression 
at 27 weeks was observed in four patients, while the ORR was 9 %, 
and a clinical benefit rate of 73 %. Grade 3 adverse events were 
noted in four patients while none had Grade 4 or 5 adverse events. 
However, the favorable treatment responses did not correlate with 
primary tumor PD-L1 positivity, hormonal status, hereditary syn-
drome status, or infiltrating mononuclear cells in the primary 
tumor. A combination therapy with ipilimumab and nivolumab 
used off-label in a 60-year-old patient with sporadic, metastatic, 
inoperable pheochromocytoma resulted in substantial reduction 
in tumor burden after close to 20 months of therapy [88].

Pituitary tumors
Pituitary tumors are considered as a subtype of NETs and the po-
tential for the utility of ICI in the treatment of these tumors has re-
cently gained some interest [89–91]. While most pituitary tumors 
are adenomas and can be cured with surgery, the gross tumor re-
section rate is about 66.4–74 % [92]. Also, the so-called refractory 
adenomas which tend to be more invasive with a high Ki-67 index 
as well as pituitary carcinomas can cause substantial morbidity and 

mortality and are challenging to treat [93]. Temozolomide has been 
used to treat aggressive forms of pituitary tumors but only about 
60 % of the tumors respond to this treatment [91]. The immune cell 
population seems to be different between normal pituitary gland 
and pituitary adenomas, and among different pituitary adenomas, 
3 distinct immunophenotypic clusters of pituitary adenomas have 
been identified with each cluster comprising a different set of im-
mune checkpoint molecular expression [94]. Later studies have 
also identified increased PD-L1 expression in pituitary tumors in-
vading the cavernous sinus and in functional and more aggressive 
adenomas [89, 95]. Anti-PD-L1 therapy has demonstrated reduc-
tion in tumor growth and in ACTH levels, and improved survival in 
murine models of Cushing’s disease [96]. In a recent case report, 
ipilimumab and nivolumab combination therapy followed by main-
tenance therapy with nivolumab in a 41-year-old patient with re-
current, invasive adrenocorticotropic hormone (ACTH)-producing 
pituitary adenoma (refractory to bilateral adrenalectomy and te-
mozolomide therapy) led to biochemical response with reduction 
in ACTH and cortisol levels, and radiographically stable disease 12 
months into ICI therapy [97]. In another report, immunotherapy 
with autoantigens along with a T helper 1 adjuvant for 24 consec-
utive weeks resulted in substantial biochemical, radiographic, and 
clinical response in a 31-year-old lady with refractory macroprol-
actinoma [98]. Further studies on a larger cohort are needed to es-
tablish the role of ICIs and other immunotherapies in the manage-
ment of aggressive pituitary adenomas and pituitary carcinomas.

Merkel cell carcinoma
MCC is a rare, aggressive form of non-melanoma skin cancer pre-
dominantly occurring in the sun-exposed areas in older, fair-
skinned individuals [99]. Due to its immunogenic nature, these tu-
mors can be targeted with ICIs. While CTLA-4 inhibitors are not 
well-studied in this condition, the PD-L1 inhibitor, avelumab and 
PD-1 inhibitors pembrolizumab and nivolumab have been studied 
in advanced MCCs in various trials, including KEYNOTE-017, Check-
Mate 358, and JAVELIN Merkel 200-part A and part B trials [100–
103] (▶Table 1). ICI therapy in MCC is associated with higher ORRs 
(31.8–62.1 %) compared to conventional NETs [101–103], and a 
neoadjuvant approach has also been utilized with tumor regression 
in close to 50 % of the patients [100]. Further optimization of ICI-
based treatment is being evaluated in early phase trials targeting 
other immune checkpoint markers such as TIM-3, LAG-3, TIGIT in 
advanced cancers [99].

Summary of the current knowledge
In general, the role of ICI in the treatment of NETs has not been 
well-established, and the currently available data demonstrate only 
modest efficacy. Combination ICI therapy is superior to monother-
apy. Some of the factors that determine favorable response to ICI 
therapy include aggressive tumor biology, high TMB, higher T lym-
phocyte and other inflammatory cell infiltration into the tumor mi-
croenvironment, and presence of certain additional pathogenic 
gene variants. On the other hand, the extent of PD-L1 expression 
has not shown clear correlation with response to ICI therapy. The 
NCCN 2021 guidelines recommend the use of pembrolizumab as 
a monotherapy as a category 2B recommendation (low-level evi-
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dence and NCCN consensus that a therapy is appropriate) in pa-
tients with NETs harboring high-TMB ( > 10 mutations/Megabase) 
as confirmed by an FDA-approved test, that have progressed on 
prior therapies and there are no alternative satisfactory therapies 
available [20]. The combination of ipilimumab and nivolumab is 
also recommended (category 2B) by the NCCN guidelines for pa-
tients with locally advanced or metastatic NETs with unfavorable 
tumor biology as an alternative to clinical trials [20]. The NANETS 
2021 guidelines comment on ICI therapy particularly for pancreat-
ic NETs and endorse the minimal treatment benefit noted in NET 
patients with single agent PD-1/PD-L1 therapy and recommend 
the use of immunotherapy for pancreatic NECs in a clinical trial set-
ting [36, 104]. Similarly, NANETS guidelines on PPGL also acknowl-
edge the lack of knowledge on the mechanisms that determine fa-
vorable outcomes with ICI therapy in PPGL and suggest the use of 
ICI to be limited to clinical trials [17, 36].

Future directions
In addition to ICI therapy per se, targeting additional immunothera-
peutic mechanisms may enhance the anti-tumor activity of ICIs, es-
pecially in NETs which are particularly indolent and relatively less sen-
sitive to ICI therapy compared to other tumors. Some of these targets 
include alteration of the tumor microenvironment and tumor vascu-
lature, T cell homing, prevention of T cell exhaustion, enhancement 
of metabolic pathways or cytokines that sustain a robust CD8 + lym-
phocyte response, and vaccination of a given patient with the anti-
gens derived from their tumor cells [105]. These strategies may hold 
potential as combination therapies along with ICIs. The intratumoral 
heterogeneity exhibited at cellular and genomic levels also contrib-
utes towards variable immune response towards these tumors and 
the relative resistance towards several targeted therapies and may 
partly explain the biology of treatment-refractory NETs [105, 106]. 
Understanding the immune-microenvironmental mechanisms driv-
ing the intratumoral heterogeneity and identifying potential treat-
ment targets may allow for further optimization of immunotherapy 
in NETs. Some progress has been made in the description of the NET 
immune-microenvironment. The immune-microenvironment seems 
to be higher in pancreatic NETs compared to midgut NETs but with-
out any clear association with expression of immune checkpoint 
markers or mutational profile [107], and a higher density of T cell in-
filtration in pancreatic NET primary tumors has been associated with 
a higher recurrence-free survival meanwhile a high regulatory T cell 
infiltration has been associated with a lower OS among patients with 
liver NET metastases [108].

In general, NETs are described as having a ‘cold’ tumor microen-
vironment which is thought to be the reason for the modest effica-
cy of ICI therapy. One of the main areas of further research lies in 
exploring the mechanisms that can turn these immunologically 
‘cold’ tumors into ‘hot’ (more immunogenic) tumors. The three 
major immunologically ‘cold’ cancer phenotypes described in-
clude: 1) the immune desert phenotype which comprises tumors 
that lack T lymphocyte priming, suboptimal antigen processing 
and presentation, and lack of antigen-presenting cell – T lympho-
cyte interaction, 2) the immune excluded phenotype in which the 
T lymphocytes do not effectively infiltrate the tumor, and 3) the 
immune inflamed phenotype in which the T lymphocytes infiltrate 
the tumor but these cells are rendered ineffective either due to T 

cell exhaustion or due to checkpoint activation [109]. Several 
mechanisms underlie the ‘cold’ tumor phenotype, including low 
multiple histocompatibility complex I (MHC I) expression, low TMB, 
activation of certain oncogenic pathways, epigenetic modifica-
tions, altered tumor vasculature, tumor hypoxia, tumor microbi-
ome, immunosuppressive tumor microenvironment, among oth-
ers [109]. The molecular landscape of both sporadic and familial 
NETs demonstrates involvement of protooncogenes as well as 
tumor suppressor genes, several of which are involved in the de-
velopment of one or more of the above-described immune evasion 
phenotypes of tumors [109, 110]. Certain molecular phenotypes 
such as metastasis-like primary-1 (MLP-1) subtype of pancreatic 
NETs are associated with worse prognosis, increased levels of im-
mune-related genes expression including T cell-inflamed-related 
genes, immune checkpoint antigens, and other immune evasion 
mechanisms, and such enhanced immune-related gene expres-
sions are associated with hypoxia and necroptosis in pancreatic 
NETs [111]. Several approaches have been attempted to convert 
the immunologically ‘cold’ tumors into ‘hot’ tumors. Some of these 
mechanisms include promoting T cell priming (immune adjuvants, 
oncolytic viruses, chemotherapy/radiation mediating an ‘abscopal 
effect’, local ablative therapies), antigen-specific T cell expansion 
(adoptive cellular therapy such as CAR-T cells, anticancer vaccines), 
and improving T cell trafficking and infiltration (oncogenic pathway 
inhibitors, epigenetic modifier inhibitors, antiangiogenic therapies, 
TGFβ inhibitors, CXCR4 inhibitors) [112–121]. Some of these mech-
anisms may hold the key to enhancing the response of NETs to ICI 
or other forms of immunotherapy (▶Fig. 5). Further details on the 
mechanisms on converting immunologically ‘cold’ into ‘hot’ tum-
ors are described elsewhere [109].

Apart from the canonical targets of CTLA-4, PD-1, or PD-L1, tar-
geting other components related to immunoregulation may serve 
as alternative therapy or augment the clinical efficacy of ICIs. For 
instance, targeting indoleamine 2,3-dioxygenase, an enzyme that 
plays a role in immune evasion in cancers may potentiate the ef-
fects of ICIs [122]. Other proteins involved in immune checkpoint 
cascade, including TIM-3, LAG-3, and TIGIL also serve as potential 
targets for novel therapy in the management of NETs [82, 99]. 
Other strategies such as targeted arterial injection of recombinant 
viruses or vaccination against anti-apoptotic molecules such as sur-
viving combined with immunogenic adjuvants are being evaluat-
ed for the treatment of NETs [122]. It is possible that those NETs 
that are deemed unlikely to respond to PRRT due to lack of avidity 
on diagnostic SSA-based imaging, may in fact be candidates for ICI 
therapy. The reason for this ‘flip-flop’ phenomenon could be be-
cause the less-avid NET lesions tend to be dedifferentiated, which 
may in turn translate to increased TMB and immunogenicity lead-
ing to increased susceptibility towards ICI therapy. This mechanism 
is probably analogous to the flip-flop phenomenon observed with 
differentiated thyroid cancers, in which tumors that are radioiodine 
non-avid tend to be avid on fluorodeoxyglucose (FDG)-PET/CT scan 
[123]. In this context, it is important to be aware of the distribution 
of SSTRs 1–5 in normal human tissue and a normative database 
[124]. The expression profile of neuropeptide receptors can vary 
across different types of immune cells [125]. Human monocytes 
express SSTR2A and SSTR1 when induced to differentiate into mac-
rophages or dendritic cells. NETs can be infiltrated by lymphocytes, 
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as shown by immunohistochemistry for CD3, CD4, and CD8. Heav-
ier tumor infiltration by T regulatory cells is associated with weak-
er anti-tumor immunity [126–128]. A high-density SSTR expres-
sion occurs not only on tumor cells but also on peritumoral vessels, 
activated lymphocytes and monocytes. Somatostatin can inhibit 
inflammation both locally and distant from the site of release [129]. 
Certain drugs, for instance, valproic acid which can inhibit the his-
tone deacetylase, can elicit an upregulation of SSTR2 mRNA and 
protein expression in human NET cells [130, 131]. Glucocorticoids 
are anti-inflammatory and in patients with ectopic ACTH secretion 
and cortisol excess the use of selective non-steroidal glucocorti-
coid receptor antagonist/modulator mifepristone and relacorilant 
can lead to an upregulation of SSTR2 expression in ACTH-secreting 
neuroendocrine tumors [132]. Inhibition of proprotein convertase 
subtilisin/kexin type 9 (PCSK9) can lead to increased MHC I expres-
sion on tumor cells leading to augmented intratumoral CD8 + lym-
phocyte infiltration [133]. Whether these mechanisms would turn 
“cold” NETs into “hot” tumors with regards to improving T-cell in-
filtration and thereby making such NET more responsive to ICI ther-
apy needs to be shown.

Studies in mouse models have revealed that the effects of ICIs 
are potentially modulated by the gut microbiome, which is in part 
mediated through certain microbiome-derived metabolites such 
as inositol [134]. Studies of the human microbiome and its impact 
on the efficacy of immunotherapy on NETs needs further investi-
gation. Although ICI therapy is technically effective in treating tu-
mors with high-TMB [68], particularly with NECs [135], the cut-offs 
associated with TMBs have thus far been inconsistent with the pre-
dictability of response to ICI therapy, and on some other cancers, 
ICI therapy has not resulted in improved ORR among patients with 
high-TMB as compared to patients with low-TMB [64]. The current 
FDA-approved indication for the use of pembrolizumab on the basis 
of high-TMB may be too broad and further tailoring of indications 
based on other factors such as environmental carcinogen exposure 
are being suggested for consideration [136].

Several clinical trials are ongoing to investigate the role of ICI 
therapy (clinicaltrials.gov), particularly in conjunction with other 
therapies such as VEGF-inhibitors (NCT05000294), TKIs 
(NCT04197310), platinum-based chemotherapy (NCT03980925), 
stereotactic radiation (NCT03110978), and 177Lu-DOTATATE 
(NCT04525638), for the treatment of NETs and NECs. Deciphering 
the molecular mechanisms and extraneous factors that modulate 
the immunogenicity of NETs, and further research on systemic ther-
apies or other agents that could potentially enhance the effects of 
ICIs hold the key to progressing the field of immunotherapy in the 
management of NETs.
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