Synthesis 2022; 54(21): 4629-4645
DOI: 10.1055/a-1898-1816
review

Light-Driven Palladium-Radical Hybrid Species: Mechanistic Aspects and Recent Examples

Guilherme A. M. Jardim
,
Juliana A. Dantas
,
Amanda A. Barboza
,
Márcio W. Paixão
,
We gratefully acknowledge the financial support in the form of funding and fellowships provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2020/10246-0, 2020/01255-6 and 2021/06099-5), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance Code 001), the Programa Nacional de Pós Doutorado/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (405052/2021-9).


Abstract

Visible-light-induced palladium-mediated reactions have become a novel and promising field in organic synthesis. This photocatalytic arsenal presents complementary features towards traditional Pd chemistry, allowing the achievement of new and unique reactivities by the generation of versatile Pd-radical hybrid species. These putative intermediates can be produced by direct excitation of Pd complexes, together with organic radical precursors. This review aims at describing recent advances regarding the combination of Pd-based photocatalytic manifolds and radical generation in the functionalization of important motifs in synthetic chemistry, encompassing detailed mechanistic descriptions and relevant examples.

1 Introduction

2 Homolytic Cleavage of C–X Bonds

3 Cyclizations, Desaturations and Atom Transfer Reactions

4 Homolytic Cleavage of N–O Bonds

5 Generation through Diazo Compounds

6 Generation of Acyl Radicals

7 Generation of Ketyl Radicals

8 Conclusions



Publication History

Received: 10 June 2022

Accepted after revision: 12 July 2022

Accepted Manuscript online:
12 July 2022

Article published online:
22 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Miyaura N, Yanagi T, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
  • 2 Negishi E.-I. Bull. Chem. Soc. Jpn. 2007; 80: 233
    • 3a Heck RF. J. Am. Chem. Soc. 1969; 91: 6707
    • 3b Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
    • 4a Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis . University Science Books; Sausalito: 2010
    • 4b Balanta A, Godard C, Claver C. Chem. Soc. Rev. 2011; 40: 4973
    • 5a Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
    • 5b Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
  • 6 The Mizoroki–Heck Reaction . Oestreich M. John Wiley & Sons; Chichester: 2009
  • 7 Caspar JV. J. Am. Chem. Soc. 1985; 107: 6718
  • 8 Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
  • 9 Ohkubo T, Takao K, Tsubomura T. Inorg. Chem. Commun. 2012; 20: 27
  • 10 Cheng W.-M, Shang R, Fu Y. Nat. Commun. 2018; 9: 5215
    • 11a Werner EW, Mei T.-S, Burckle AJ, Sigman MS. Science 2012; 338: 1455
    • 11b Guo J.-Y, Minko Y, Santiago CB, Sigman MS. ACS Catal. 2017; 7: 4144
    • 11c West MJ, Watson AJ. B. Org. Biomol. Chem. 2019; 17: 5055
    • 12a Shee M, Singh ND. P. Catal. Sci. Technol. 2021; 11: 742
    • 12b Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
  • 13 Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
    • 14a Manolikakes G, Knochel P. Angew. Chem. Int. Ed. 2008; 48: 205
    • 14b Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H. ACS Catal. 2015; 5: 6111
    • 14c Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
    • 15a Chuentragool P, Kurandina D, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 11586
    • 15b Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
    • 15c Liu Z, Chen X.-Y. Chem 2020; 6: 1219
    • 15d Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
  • 16 Shen Y, Cornella J, Juliá-Hernández F, Martin R. ACS Catal. 2017; 7: 409
    • 17a Parasram M, Chuentragool P, Wang Y, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 14857
    • 17b Wang GZ, Shang R, Cheng WM, Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
    • 17c Zhou WJ, Cao GM, Shen G, Zhu XY, Gui YY, Ye JH, Sun L, Liao LL, Li J, Yu DG. Angew. Chem. Int. Ed. 2017; 56: 1568
  • 18 Kurandina D, Parasram M, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
  • 19 Kancherla R, Muralirajan K, Maity B, Zhu C, Krach PE, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3412
  • 20 Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
  • 21 Chuentragool P, Yadagiri D, Morita T, Sarkar S, Parasram M, Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 1794
  • 22 Kvasovs N, Iziumchenko V, Palchykov V, Gevorgyan V. ACS Catal. 2021; 11: 3749
  • 23 Li M, Qiu Y.-F, Wang C.-T, Li X.-S, Wei W.-X, Wang Y.-Z, Bao Q.-F, Ding Y.-N, Shi W.-Y, Liang Y.-M. Org. Lett. 2020; 22: 6288
  • 24 Adamik R, Földesi T, Novák Z. Org. Lett. 2020; 22: 8091
  • 25 Huang H.-J, Wang Y.-T, Wu Y.-K, Ryu I. Org. Chem. Front. 2020; 7: 1266
  • 26 Lee GS, Kim D, Hong SH. Nat. Commun. 2021; 12: 991
  • 27 Zhao B, Shang R, Wang G.-Z, Wang S, Chen H, Fu Y. ACS Catal. 2020; 10: 1334
  • 28 Chen L, Guo L.-N, Liu S, Liu L, Duan X.-H. Chem. Sci. 2021; 12: 1791
  • 29 Sun S, Zhou C, Yu J.-T, Cheng J. Org. Lett. 2019; 21: 6579
  • 30 Cheung KP. S, Kurandina D, Yata T, Gevorgyan V. J. Am. Chem. Soc. 2020; 142: 9932
  • 31 Huang H.-M, Bellotti P, Pflüger PM, Schwarz JL, Heidrich B, Glorius F. J. Am. Chem. Soc. 2020; 142: 10173
  • 32 Yang Z, Koenigs RM. Chem. Eur. J. 2021; 27: 3694
  • 33 Du J, Wang X, Wang H, Wei J, Huang X, Song J, Zhang J. Org. Lett. 2021; 23: 5631
  • 34 Jia X, Zhang Z, Gevorgyan V. ACS Catal. 2021; 11: 13217
  • 35 Liu Z.-L, Ye Z.-P, Chen Y.-X, Zheng Y, Xie Z.-Z, Guan J.-P, Xiao J.-A, Chen K, Xiang H.-Y, Yang H. Org. Lett. 2022; 24: 924
  • 36 Kim D, Lee GS, Kim D, Hong SH. Nat. Commun. 2020; 11: 5266
  • 37 Jiao Z, Lim LH, Hirao H, Zhou JS. Angew. Chem. Int. Ed. 2018; 57: 6294
  • 38 Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Angew. Chem. Int. Ed. 2020; 59: 10316
  • 39 Luo Y.-C, Tong F.-F, Zhang Y, He C.-Y, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
  • 40 Oku N, Murakami M, Miura T. Org. Lett. 2022; 24: 1616
  • 41 Ma J.-W, Chen X, Zhou Z.-Z, Liang Y.-M. J. Org. Chem. 2020; 85: 9301
  • 42 Feng L, Guo L, Yang C, Zhou J, Xia W. Org. Lett. 2020; 22: 3964
  • 43 Bellotti P, Koy M, Gutheil C, Heuvel S, Glorius F. Chem. Sci. 2021; 12: 1810
  • 44 Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
  • 45 Jin W, Yu S. Org. Lett. 2021; 23: 6931
  • 46 Zhou Z.-Z, Zhao J.-H, Gou X.-Y, Chen X.-M, Liang Y.-M. Org. Chem. Front. 2019; 6: 1649
  • 47 Zhao G, Yao W, Mauro JN, Ngai M.-Y. J. Am. Chem. Soc. 2021; 143: 1728
  • 48 Kaga A, Chiba S. ACS Catal. 2017; 7: 4697
    • 49a Nefkens GH. L, Tesser GI. J. Am. Chem. Soc. 1961; 83: 1263
    • 49b Müller DS, Untiedt NL, Dieskau AP, Lackner GL, Overman LE. J. Am. Chem. Soc. 2015; 137: 660
  • 50 Murarkaa S. Adv. Synth. Catal. 2018; 360: 1735
  • 51 Rykaczewski KA, Wearing ER, Blackmun DE, Schindler CS. Nat. Synth. 2022; 1: 24
  • 52 Huang H.-M, Koy M, Serrano E, Pflüger PM, Schwarz JL, Glorius F. Nat. Catal. 2020; 3: 393
  • 53 Koy M, Sandfort F, Tlahuext-Aca A, Quach L, Daniliuc CG, Glorius F. Chem. Eur. J. 2018; 24: 4552
  • 54 Wang G.-Z, Shang R, Fu Y. Org. Lett. 2018; 20: 888
  • 55 Xing W.-L, Shang R, Wang G.-Z, Fu Y. Chem. Commun. 2019; 55: 14291
    • 56a Li P, Zhao J, Shi L, Wang J, Shi X, Li F. Nat. Commun. 2018; 9: 1972
    • 56b Lee W.-CC, Wang D.-S, Zhang C, Xie J, Li B, Zhang XP. Chem 2021; 7: 1588
    • 57a te Grotenhuis C, van den Heuvel N, van der Vlugt JI, de Bruin B. Angew. Chem. Int. Ed. 2018; 57: 140
    • 57b Zhao J, Li P, Xu Y, Shi Y, Li F. Org. Lett. 2019; 21: 9386
    • 57c Su Y.-L, Liu G.-X, Liu J.-W, Tram L, Qiu H, Doyle MP. J. Am. Chem. Soc. 2020; 142: 13846
  • 58 Zhang Z, Kvasovs N, Dubrovina A, Gevorgyan V. Angew. Chem. Int. Ed. 2022; 61: e202110924
  • 59 Banerjee A, Lei Z, Ngai M.-Y. Synthesis 2019; 51: 303
  • 60 Torres GM, Liu Y, Arndtsen BA. Science 2020; 368: 318
  • 61 Liu Y, Zhou C, Jiang M, Arndtsen BA. J. Am. Chem. Soc. 2022; 144: 9413
  • 62 Sardana M, Bergman J, Ericsson C, Kingston LP, Schou M, Dugave C, Audisio D, Elmore CS. J. Org. Chem. 2019; 84: 16076
  • 63 Meyer T, Rabeah J, Breckner A, Wu X.-F. Chem. Eur. J. 2021; 27: 5642
  • 64 Streuff J. Synthesis 2013; 45: 281
  • 65 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 66 Huang H.-M, Bellotti P, Kim S, Zhang X, Glorius F. Nat. Synth. 2022; 1: 464