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Introduction
The coronaviruses (CoV) are a group of enveloped, single-stranded 
RNA viruses with the ability to infect birds and mammals. There are 
seven species of human coronaviruses, all of which cause respira-
tory tract infections that vary in severity [1]. Four human corona-
viruses are responsible for 15 % to 30 % of common cold cases, while 

three – severe acute respiratory syndrome CoV 1 (SARS-CoV-1), 
Middle East respiratory syndrome CoV (MERS-CoV), and SARS-
CoV-2 – cause more severe symptoms and have a significant mor-
tality rate [2].

Drug repurposing, i. e., investigating approved drugs for alterna-
tive therapeutic purposes, has emerged as a shorter, less costly al-
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Background  Coronaviruses are emerging threats for human 
health, as demonstrated by the ongoing coronavirus disease 
2019 (COVID-19) pandemic that is caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 
is closely related to SARS-CoV-1, which was the cause of the 
2002–2004 SARS outbreak, but SARS-CoV-1 has been the sub-
ject of a relatively limited number of studies. Understanding 
the potential pathways and molecular targets of SARS-CoV-1 
will contribute to current drug repurposing strategies by help-
ing to predict potential drug-disease associations.
Methods  A microarray dataset, GSE1739, of 10 SARS patients 
and 4 healthy controls was downloaded from NCBI’s GEO re-
pository, and differential expression was identified using NCBI’s 
GEO2R software. Pathway and enrichment analysis of the dif-
ferentially expressed genes was carried out using Ingenuity 
Pathway Analysis and Gene Set Enrichment Analysis, respec-
tively.
Results  Our findings show that the drugs dexamethasone, 
filgrastim, interferon alfacon-1, and levodopa were among the 
most significant upstream regulators of differential gene ex-
pression in SARS patients, while neutrophil degranulation was 
the most significantly enriched pathway.
Conclusion  An enhanced understanding of the pathways and 
molecular targets of SARS-CoV-1 in humans will contribute to 
current and future drug repurposing strategies, which are an 
essential tool to combat rapidly emerging health threats.
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ternative to traditional drug discovery and development, especially 
in the face of emerging infectious diseases with pandemic potential 
[3]. The coronavirus disease 2019 (COVID-19) pandemic, which is 
caused by SARS-CoV-2 infection, has illustrated the importance of 
drug repurposing strategies, which identified the therapeutic ben-
efits of dexamethasone for COVID-19 patients who require mechani-
cal ventilation or supplemental oxygen and remdesivir for those who 
require supplemental oxygen, among others [3, 4].

The main objective of the current study is to identify the canoni-
cal pathways and upstream regulators associated with SARS-CoV-1 
infection in order to predict drug-disease associations based on 
pathway analysis.

Methods

Data acquisition
The microarray dataset GSE1739 was downloaded from the Gene 
Expression Omnibus (GEO) repository. GSE1739 included gene ex-
pression profiles of peripheral blood mononuclear cells (PBMCs) 
from adult SARS patients (n = 10) and healthy controls (n = 4). The 
Affymetrix GeneChip Human Genome Focus Array (HG-Focus) was 
used to produce the gene expression profiles [5].

Identification of differential expression
A list of 8,793 differentially expressed genes between SARS patients 
and healthy controls were identified using NCBI’s GEO2R interac-
tive web tool, which compares groups of samples from the GEO re-
pository. Enhanced Volcano, a Bioconductor package, was used to 
create a labeled volcano plot of the 8,793 differentially expressed 
genes.

Pathway and enrichment analysis
QIAGEN’s Ingenuity Pathway Analysis (IPA) was then utilized to 
scrutinize the differentially expressed genes between SARS patients 
and healthy controls. IPA revealed a total of 1,430 significantly dif-
ferentially expressed genes (adjusted p-value < 0.05), with 928 
downregulated genes and 502 upregulated genes. Through IPA 
Core Analysis, the canonical pathways and upstream regulators as-
sociated with the differentially expressed genes were inferred.

The 1,430 significantly differentially expressed genes in SARS 
patients were also scrutinized using the Gene Set Enrichment Ana-
lysis (GSEA) software [6, 7]. GSEA was applied to enrich the im-
mune-related pathways from the list of genes.
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▶Fig. 1 Volcano plot showing the differentially expressed genes in SARS-CoV-1 patients compared to healthy controls as obtained from GEO2R.The 
full list of differentially expressed genes can be found in Supplementary Table 1.
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Results and Discussion

Differentially expressed genes
The list of differentially expressed genes obtained from GEO2R are 
displayed in the form of a volcano plot (▶Fig. 1), showing 26 signif-
icantly downregulated genes (adjusted p-value < 0.05, log2FC < -2) 
as well as 35 significantly upregulated genes (adjusted p-value < 0.05, 
log2FC > 2).

Canonical pathways
The integrin-linked kinase (ILK) signaling pathway was identified 
by IPA as the most significant canonical pathway in SARS patients 
compared to healthy controls (p-value = 1.9 × 10–11, z-score = 2.5) 
(▶Fig. 2).

ILK, a highly conserved and ubiquitously expressed intracellular 
protein, regulates signaling pathways for multiple cellular func-
tions, and it has a major role in the contractility of cardiac and 
smooth muscles [8]. Dysfunction of the ILK signaling pathway has 
been associated with cardiomyopathies, glial scar formation, insu-

lin resistance, kidney disease, and tumorigenesis, with increased 
ILK expression connected to an unfavorable cancer prognosis and 
the multidrug resistance of tumor cells [8–13].

In the context of bacterial infection, the ILK signaling pathway 
modulates the production of tumor necrosing factor alpha (TNF-
α), a proinflammatory cytokine, and the activation of nuclear fac-
tor kappa B (NF-κB) signaling, both of which are essential compo-
nents of the innate immune response [14]. Similarly, ILK was shown 
to regulate the endothelium’s inflammatory response to LPS expo-
sure in a murine model [15].

With regard to viral infection, ILK was found to be enriched in 
an alveolar mucosa model following exposure to recombinant 
SARS-CoV-2 spike glycoprotein S1 [16]. ILK inhibition was associ-
ated with improved viability in mouse cardiomyocytes infected 
with coxsackievirus B3, the latter of which is the most common 
agent in viral myocarditis [17]. ILK was also shown to promote her-
pes simplex virus 1 (HSV-1) replication via the phosphorylation of 
Akt [18].
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▶Fig. 2 Illustration of the integrin-linked kinase (ILK) pathway as differentially regulated between SARS patients and healthy controls. Illustration 
was generated using QIAGEN’s Ingenuity Pathway Analysis (IPA).
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Upstream regulators
IPA revealed that dexamethasone, lipopolysaccharide, and fil-
grastim are the most significant upstream drug regulators in SARS 
patients compared to healthy controls (▶Table 1).

Dexamethasone, a glucosteroid medication with anti-inflam-
matory and immunosuppressive effects, was shown by IPA to be 
the most significant upstream regulator (p-value = 1.21 × 10–41, 
 z-score = 2.939), indirectly interacting with 313 of the significantly 

▶Table 1 Upstream regulators in SARS patients (sorted by p-value) as shown by QIAGEN’s Ingenuity Pathway Analysis (IPA).

Upstream regulator regulator type Predicted activation Activation z-score p-value

Dexamethasone Chemical drug Activated 2.939 1.21 × 10–41

TGFB1 Growth factor Activated 2.35 4.51 × 10–35

Beta-estradiol Chemical – endogenous – −1.796 3.26 × 10–32

HNF4A Transcription regulator – 0.709 1.94 × 10–29

TNF Cytokine – 1.715 2.01 × 10–28

Lipopolysaccharide Chemical drug Activated 2.285 2.96 × 10–28

ESR1 Ligand-dependent nuclear receptor – −1.546 4.15 × 10–27

Tretinoin Chemical – endogenous – 1.327 2.77 × 10–26

CD3 Complex Inhibited −2.104 2.74 × 10–25

OSM Cytokine – 1.792 6.52 × 10–25

TP53 Transcription regulator – −0.514 1.44 × 10–24

Immunoglobulin Complex Inhibited −3.814 5.97 × 10–24

Filgrastim Biologic drug Activated 4.097 7.67 × 10–23

IL1B Cytokine Activated 2.182 1.94 × 10–22

IFNG Cytokine – −0.655 6.44 × 10–22

Camptothecin Chemical drug – 0.325 4.50 × 10–20

IL2 Cytokine – −1.733 4.70 × 10–20

Trichostatin A Chemical drug – 0.011 2.31 × 10–19

GATA1 Transcription regulator – 1.379 4.69 × 10–19

CEBPA Transcription regulator Activated 4.295 1.90 × 10–18

▶Fig. 3 Dexamethasone and its targeted genes in SARS patients. All targeted genes were significantly differentially expressed based on QIAGEN’s 
Ingenuity Pathway Analysis (IPA). The full list of targeted genes can be found in Supplementary Table 2.
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differentially expressed genes in SARS patients (▶Fig. 3). It was the 
first drug shown to reduce deaths from severe SARS-CoV-2 infec-
tion, and it is currently recommended for patients suffering from 
COVID-19 pneumonia who need mechanical ventilation or oxygen 
therapy [19, 20]. Dexamethasone decreases inflammation by sup-
pressing neutrophil migration and, in the context of COVID-19, by 

modulating interferon signaling to downregulate IFN-stimulated 
genes and alter IFN-active neutrophils [20, 21].

Our findings revealed that lipopolysaccharide (LPS) was the sec-
ond most significant upstream regulator (p-value = 2.96 × 10–28,  
z-score = 2.285) in SARS patients. They are major components of 
Gram-negative bacterial membranes and strong immunostimu-
lants, entering the bloodstream from gut microbiota or sites of in-

▶Table 2 Upstream regulators in SARS patients (sorted by z-score) as revealed by QIAGEN’s Ingenuity Pathway Analysis (IPA).

Upstream regulator regulator type Predicted 
activation

Activation 
z-score

p-value

Most activated regulators
GABA Chemical - endogenous Activated 4.438 2.09 × 10–06

CEBPA Transcription regulator Activated 4.295 1.90 × 10–18

E. coli B4 lipopolysaccharide Chemical toxicant Activated 4.159 2.28 × 10–03

Filgrastim Biologic drug Activated 4.097 7.67 × 10–23

CSF3 Cytokine Activated 3.764 1.50 × 10–14

STAT3 Transcription regulator Activated 3.585 2.68 × 10–10

CST5 Other Activated 3.573 3.45 × 10–05

Interferon alfacon-1 Biologic drug Activated 3.5 8.09 × 10–11

Trinitrobenzenesulfone Chemical reagent Activated 3.497 2.35 × 10–03

IL6 Cytokine Activated 3.409 3.31 × 10–13

mir-17 microRNA Activated 3.399 5.96 × 10–03

mir-16-5p (and others) Mature microRNA Activated 3.371 2.02 × 10–04

PTTG1 Transcription regulator Activated 3.364 9.91 × 10–05

IL1A Cytokine Activated 3.33 1.91 × 10–07

miR-1-3p (and others) Mature microRNA Activated 3.321 3.22 × 10–05

Alefacept Biologic drug Activated 3.243 2.68 × 10–08

YAP1 Transcription regulator Activated 3.192 4.48 × 10–04

CAMP Other Activated 3.169 3.03 × 10–05

SP110 Transcription regulator Activated 3.157 1.49 × 10–08

IL17A Cytokine Activated 3.152 1.11 × 10–05

Most inhibited regulators

TGFBR2 Kinase Inhibited −3.981 6.01 × 10–11

Immunoglobulin Complex Inhibited −3.814 5.97 × 10–24

GW3965 Chemical reagent Inhibited −3.1 8.16 × 10–05

Z-LLL-CHO Chemical - protease Inhibited −2.91 1.50 × 10–14

Levodopa Chemical - endogenous Inhibited −2.854 2.18 × 10–03

ATP7B Transporter Inhibited −2.828 3.19 × 10–03

MYCN Transcription regulator Inhibited −2.816 7.38 × 10–04

IFNB1 Cytokine Inhibited −2.79 1.52 × 10–02

EBI3 Cytokine Inhibited −2.749 2.92 × 10–02

JAK3 Kinase Inhibited −2.747 3.82 × 10–03

Phytohemagglutinin Chemical drug Inhibited −2.744 2.89 × 10–15

Alpha catenin Group Inhibited −2.732 1.32 × 10–07

NUP98-DDX10 Fusion gene/product Inhibited −2.714 1.64 × 10–04

l-asparaginase Biologic drug Inhibited −2.673 1.51 × 10–02

NS-398 Chemical reagent Inhibited −2.661 7.50 × 10–04

SENP3 Peptidase Inhibited −2.646 2.48 × 10–02

PTEN Phosphatase Inhibited −2.598 6.09 × 10–09

ITGB2 Transmembrane regulator Inhibited −2.538 2.90 × 10–04

MYCL Transcription regulator Inhibited −2.538 4.20 × 10–02

Medroxyprogesterone Chemical drug Inhibited −2.524 2.70 × 10–15
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fection [22]. Interestingly, the spike proteins of SARS-CoV-2 were 
found to interact with and bind to LPS in the blood, boosting pro-
inflammatory activity both in vitro and in vivo [23]. Moreover, cir-
culatory LPS levels were connected to the severity of patient out-
come in several viral infections, including SARS-CoV-2, HIV, and 
dengue virus [24].

Filgrastim was the third most significant upstream regulator (p-
value = 7.67 × 10–23, z-score = 4.097) in SARS patients. Used to treat 
neutropenia, filgrastim is a recombinant form of human granulo-
cyte colony-stimulating factor that boosts neutrophil counts by 
acting on neutrophil progenitors [25]. One study has shown that 
the most activated biological processes in SARS patients are neu-
trophil activation and degranulation [26]. Similarly, another study 
comparing differentially expressed genes between SARS and H1N1 
patients identified enriched hub genes involved in the antimicro-
bial humoral response as well as neutrophil activation and degran-
ulation [27].

With regard to neutrophils, it has been hypothesized that low-
ering the neutrophil burden in patients with severe SARS-CoV in-
fection by inhibiting the neutrophil elastase (ELANE) and lactotrans-
fferin (LTF) genes directly results in lung protection [28]. Corre-
spondingly, in neutropenic cancer patients with COVID-19, 
filgrastim administration was shown to increase the number of hos-
pitalizations among outpatients as well as the number of deaths 
among inpatients [29].

To gain further insight from Reghunathan et al.’s (2005) data 
[5], IPA was used to identify the most activated and most inhibited 
upstream regulators in SARS patients compared to healthy controls 
(▶Table 2).

Interferon alfacon-1 is a non-naturally occurring and synthetic type-
1 interferon which is primarily used in the treatment of chronic hepati-
tis C infection [30]. Our findings show that it was the most activated 
drug upstream regulator (p-value = 4.097, z-score = 7.67 × 10–23) in SARS 
patients, and an exploratory study has shown that interferon alfacon-1 
demonstrates significant anti-viral activity in cell lines infected with 
SARS-CoV-1 [31]. Moreover, administration of interferon alfacon-1 

alongside corticosteroids was associated with improved clinical param-
eters in SARS [32].

In contrast, levodopa, a dopamine precursor used for Parkinson’s 
disease management, was shown by IPA to be the third most inhibi-
ted upstream regulator (p-value = −2.854, z-score = 2.18 × 10–03) in 
SARS patients. Emerging reports point towards a potential associa-
tion between SARS-CoV-2 infection and subsequent parkinsonism 
development, and Parkinson’s disease patients infected with SARS-
CoV-2 were observed to have a higher case fatality than the general 
population [33–35].

Enrichment analysis
GSEA revealed that the neutrophil degranulation and innate im-
mune system pathways were the most significantly enriched path-
ways in SARS patients (▶Table 3). Neutrophils play a key role in in-
nate immunity , and the lungs are a major neutrophil reservoir in 
humans [36]. SARS-CoV-2 infection has been shown to alter the 
abundance, functionality, and phenotype of neutrophils in the na-
sopharyngeal epithelium, lungs, and blood [37].

Conclusions
The present findings illustrate the utility of pathway and enrich-
ment analysis in drug repurposing research. The drugs dexameth-
asone, filgrastim, interferon alfacon-1, and levodopa were among 
the most significant upstream regulators of differential gene ex-
pression in SARS patients.
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