Synlett 2022; 33(15): 1505-1510
DOI: 10.1055/a-1875-2646
letter

Mild Synthesis of Symmetric 3,5-Disubstituted Nitrobenzenes

Telmo N. Francisco
a   LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
,
Joana L. C. Sousa
a   LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
,
Samuel Guieu
a   LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
b   CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
,
a   LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
,
a   LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
› Author Affiliations
This work was financed by Portugal 2020 through FEDER in the framework of POCI and in the scope of the projects EpigenGlicON (POCI-01-0145-FEDER-029767), LAQV-REQUIMTE (UIDB/50006/ 2020), and CICECO – Aveiro Institute of Materials (UIDB/50011/2020 & UIDP/50011/2020), co-financed by FCT/MCTES. J.S., H.A., and T.F. acknowledge the EpigenGlicON project (POCI-01-0145-FEDER-029767) for their researcher contracts and research grant, respectively.


Abstract

A mild synthesis of 3,5-disubstituted nitrobenzenes from readily available 3-formylchromones is reported. The developed methodology follows a cascade process, promoted by 1,8-diazabicyclo[5.4.0]undec-7-ene. The proposed mechanism involves an initial Michael addition of nitromethane at C-2 of a 3-formylchromone. The resultant intermediate undergoes another Michael reaction with a second 3-formylchromone molecule. After ring closure through intramolecular cyclization, the aromatization is completed by deformylation, affording the 3,5-disubstituted nitrobenzenes in 52–86% yield. The reported method produces three new C–C bonds in a simple and straightforward manner, and it is consistent with gram-scale synthesis.

Supporting Information



Publication History

Received: 28 March 2022

Accepted after revision: 13 June 2022

Accepted Manuscript online:
13 June 2022

Article published online:
20 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Patterson S, Wyllie S. Trends Parasitol. 2014; 30: 289
    • 1b Nepali K, Lee H.-Y, Liou J.-P. J. Med. Chem. 2019; 62: 2851
  • 2 Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; 2001. Chap. 1 3
  • 3 Booth G. In Ullmann's Encyclopedia of Industrial Chemistry. Ley C., Wiley-VCH; 2000: DOI: 10.1002/14356007.a17_411
    • 4a Capperucci A, Tanini D. Chemistry (Basel, Switz.) 2022; 4: 77
    • 4b Tanini D, Dalia C, Capperucci A. Green Chem. 2021; 23: 5680
    • 4c Gupta S, Ansari A, Sashidhara KV. Tetrahedron Lett. 2019; 60: 151076
    • 4d Meenakshi R, Shakeela K, Kutti Rani S, Rang Rao G. Catal. Lett. 2018; 148: 246
    • 4e Ke Q, Wu M, Yu H, Lu G. ChemCatChem 2017; 9: 733
    • 5a Wu C, Bian Q, Ding T, Tang M, Zhang W, Xu Y, Liu B, Xu H, Li H.-B, Fu H. ACS Catal. 2021; 11: 9561
    • 5b Zhang K, Budinská A, Passera A, Katayev D. Org. Lett. 2020; 22: 2714
    • 5c Prakash GK. S, Mathew T. Angew. Chem. Int. Ed. 2010; 49: 1726
  • 6 Yan G, Yang M. Org. Biomol. Chem. 2013; 11: 2554
  • 7 Murray JI, Silva Elipe MV, Baucom KD, Brown DB, Quasdorf K, Caille S. J. Org. Chem. 2022; 87: 1977
    • 8a Sepay N, Dey SP. J. Heterocycl. Chem. 2014; 51: E1
    • 8b Plaskon AS, Ryabukhin SV, Volochnyuk DM, Gavrilenko KS, Shivanyuk AN, Tolmachev AA. J. Org. Chem. 2008; 73: 6010
    • 8c Baral ER, Sharma K, Akhtar MS, Lee YR. Org. Biomol. Chem. 2016; 14: 10285
  • 9 Singh S, Samineni R, Pabbaraja S, Mehta G. Angew. Chem. Int. Ed. 2018; 57: 16847
    • 10a Albuquerque HM. T, Santos CM. M, Balanay MP, Cavaleiro JA. S, Silva AM. S. Eur. J. Org. Chem. 2017; 5293
    • 10b Sousa JL. C, Talhi O, Rocha DH. A, Pinto DC. G. A, Almeida Paz FA, Bachari K, Kirsch G, Silva AM. S. Synlett 2015; 26: 2724
  • 11 3,5-Disubstituted Nitrobenzenes 3a–g; General Procedure In a 25 mL round-bottom flask, MeNO2 (2; 10.0 μL, 0.187 mmol, 0.5 equiv) and DBU (28.0 μL, 0.187 mmol, 0.5 equiv) were dissolved in CH2Cl2 (2 mL), and the solution was stirred for 30 min at the reflux. The appropriate 3-formylchromone 1ag (0.374 mmol, 1 equiv) was then added and the mixture was refluxed under the normal atmosphere for 20 h (3a, 3ce and 3g)or 40 h (3b and 3f). The reaction was quenched with H2O and the mixture was extracted with CH2Cl2. The organic layer was dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by preparative TLC (10% hexane–CH2Cl2) and recovered by extraction with EtOAc.
  • 12 Typical analytical data: (5-Nitro-1,3-phenylene)bis[(2-hydroxyphenyl)methanone] (3a) Light-yellow solid; yield: 36.0 mg (53%); mp 114–16 °C. 1H NMR (300 MHz, CDCl3): δ = 11.63 (s, 2 H, OH), 8.72 (d, J = 1.5 Hz, 2 H, H-2), 8.27 (t, J = 1.5 Hz, 1 H, H-4), 7.60 (ddd, J = 8.7, 7.2, 1.7 Hz, 2 H, H-9), 7.50 (dd, J = 8.2, 1.7 Hz, 2 H, H-11), 7.14 (dd, J = 8.7, 1.1 Hz, 2 H, H-8), 6.96 (ddd, J = 8.2, 7.2, 1.1 Hz, 2 H, H-10). 13C NMR (75 MHz, CDCl3): δ = 197.6 (2 C, C-5), 163.6 (2 C, C-7), 148.0 (C-1), 139.7 (2 C, C-3), 137.8 (2 C, C-9), 134.5 (C-4), 132.7 (2 C, C-11), 126.4 (2 C, C-2), 119.5 (2 C, C-10), 119.1 (2 C, C-8), 118 (2 C, C-6). HRMS (ESI): m/z [M – H] calcd for C20H12NO6: 362.0665; found: 362.0662. (5-Nitro-1,3-phenylene)bis[(2-hydroxy-5-nitrophenyl)methanone] (3f) Beige solid; yield: 72.9 mg (86%); mp 256–258 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 8.63 (d, J = 1.6 Hz, 2 H, H-2), 8.42 (t, J = 1.6 Hz, 1 H, H-4), 8.36–8.30 (m, 4 H, H-9 and H-11), 7.14 (d, J = 9.8 Hz, 2 H, H-8). 13C NMR (75 MHz, DMSO-d 6): δ = 192.1 (2 C, C-5), 162.8 (2 C, C-7), 148.5 (C-1), 139.9 (2 C, C-1), 139.0 (2 C, C-3), 134.9 (C-4), 129.4 (2 C, C-9 or C-11), 127.9 (2 C, C-9 or C-11), 127.4 (2 C, C-2), 125.2 (2 C, C-6), 118.1 (2 C, C-8). HRMS (ESI): m/z [M –H] calcd for C20H10N3O10: 452.0365; found: 452.0369. 8-Nitro-11H-6,10-metheno-5H-dibenzo[d,m][1,3]dioxacyclotetradecin-5,11-dione (4) Brown solid; yield: 17.8 mg (26%); mp 176–178 °C. 1H NMR (300 MHz, CDCl3): δ = 9.05 (d, J = 1.5 Hz, 2 H, H-2), 8.26 (t, J = 1.5 Hz, 1 H, H-3), 7.71 (dd, J = 7.6, 1.8 Hz, 2 H, H-9), 7.56 (ddd, J = 8.4, 7.4, 1.8 Hz, 2 H, H-11), 7.29–7.15 (m, 4 H, H-8 and H-10), 6.09 (s, 2 H, H-12). 13C NMR (75 MHz, CDCl3): δ = 191.8 (2 C, C-5), 155.7 (2 C, C-7), 149.1 (C-1), 141.5 (C-4), 137.7 (2 C, C-3), 134.2 (2 C, C-11), 132.5 (2 C, C-9), 127.9 (2 C, C-6), 126.2 (2 C, C-2), 123.8 (2 C, C-8 or 10), 113.7 (2 C, C-8 or 10), 88.4 (C-12). HRMS (ESI+): m/z [M + H]+ calcd for C21H14NO6: 376.0821; found: 376.0844.
  • 13 CCDC 2159686–2159688 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 14 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; 1
  • 15 Shrestha R, Lee YR. Org. Lett. 2018; 20: 7167
  • 16 Rodríguez JM, Dolors Pujol M. Tetrahedron Lett. 2011; 52: 2629
  • 17 Bur SK. In Comprehensive Organic Synthesis II, Vol. 6. Knochel P, Molander GA. Elsevier; Oxford: 2014: 755
  • 18 (5-Nitro-1,3-phenylene)bis[(2-hydroxy-5-methylphenyl)methanone] (3b): Gram-Scale Synthesis In a 100 mL round-bottomed flask (100 mL), MeNO2 (2; 142 μL, 2.65 mmol, 0.5 equiv) and DBU (397 μL, 2.65 mmol, 0.5 equiv) were dissolved in CH2Cl2 (28 mL), and the mixture was stirred for 30 min at the reflux. 3-Formylchromone 1b (1.0 g, 5.3 mmol) was added, and the mixture was refluxed under a normal atmosphere for 40 h. The reaction was quenched with H2O and the mixture was extracted with CH2Cl2. The organic layer was dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, gradient 20% hexane–CH2Cl2 to CH2Cl2); yield: 1.5 g (72%).