Gram-Scale Synthesis of Substituted Triarylmethanes

Meng-Yang Chang ${ }^{\text {*a,b © }}$
Chun-Yi Lin ${ }^{\text {a }}$
Shin-Mei Chen ${ }^{\text {a }}$
${ }^{a}$ Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807 Taiwan
${ }^{\text {b }}$ Department of Medical Research, Kaohsiung
Medical University Hospital, Kaohsiung 807,
Taiwan
mychang@kmu.edu.tw

o green condition o high yield o gram-scale synthesis o>50 examples
o facile-operational o open-vessel o by-product is water o environmentally friendly

Received: 26.04.2022
Accepted after revision: 27.05.2022
Published online: 27.05.2022 (Accepted Manuscript), 21.07.2022 (Version of Record) DOI: 10.1055/a-1863-3443; Art ID: SS-2022-04-0213-OP

Abstract A high-yield, open-vessel route for the facile-operational, gram-scale synthesis of functionalized triarylmethanes (TRAMs) is described via silica-coated magnetic nanoparticles of modified polyphosphoric acid $\left(\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}-\mathrm{PPA}\right)$-mediated intermolecular Friedel-Crafts reaction of substituted aryl aldehydes with 2 equivalents of oxygenated arenes under environmentally friendly reaction conditions. Among the overall reaction process, only water was generated as the by-product. Various reaction conditions are investigated for efficient transformation.

Key words gram-scale synthesis, triarylmethanes, magnetic nanoparticles, Friedel-Crafts reaction, environmentally friendly

For the related applications of triarylmethanes (TRAMs) and their derivatives, there are several review articles documented. In 1993, Duxbury outlined the first photochemical and photophysical dyestuff properties of triphenylmethane. ${ }^{1}$ Afterward, Shchepinov and Korshun provided a discussion for the applications of a bifunctional trityl cation (a deprotonated TRAMs). ${ }^{2}$ The Nair group summarized the synthetic chemistry of triaryl- and triheteroarylmethanes. ${ }^{3}$

Panda and co-worker analyzed these elegant synthetic methodologies of diversified TRAMs. ${ }^{4}$ Subsequently, by focusing the transition metal catalysis, Nambo and Crudden compared the synthetic routes of chiral TRAMs. ${ }^{5}$ Very recently, the Saha, Huang, and Nandi teams described the advanced development in the progress of catalytic and stoichiometric synthesis of TRAMs. ${ }^{6}$ These review papers demonstrated that the core system of symmetrically and asymmetrically substituted TRAMs could exhibit numerous unique properties, including organic functionalized materials, biologically active molecules, chemoselective metal-ion sensors, and useful synthetic building blocks.

Traditionally, the Friedel-Crafts reaction and Baeyer condensation have been two of the most commonly employed tools for the formation of TRAMs in the presence of different promoters. Several promoters have been reported, as shown in Scheme 1, including protic acid ($\mathrm{TsOH},{ }^{7} \mathrm{TfOH}^{8}$), Lewis acid $\left(\mathrm{FeCl}_{3},{ }^{9} \mathrm{TiCl}_{4},{ }^{10} \mathrm{NbCl}_{5},{ }^{11} \mathrm{SbCl}_{3},{ }^{12} \mathrm{AlCl}_{3},{ }^{13} \mathrm{AuCl}_{3},{ }^{14}\right.$ $\mathrm{CuCl}_{2},{ }^{15} \mathrm{SnCl}_{4},{ }^{16} \quad \mathrm{ZrOCl}_{2}{ }^{17}$), acidic polymer (NKC-9, ${ }^{18}$ Amberlyst-15, ${ }^{19}$ Nafion- H^{20}), oxidant ($\mathrm{NaICl}_{2},{ }^{21} \mathrm{I}_{2}{ }^{22}$), clay (K10), ${ }^{23}$ ionic liquid, ${ }^{24}$ microwave irradiation, and sonication. ${ }^{25}$

Scheme 1 Synthetic routes of triarylmethanes (TRAMs)

Recently, a number of transition-metal-catalyzed methods have emerged as an alternative route to provide structurally diverse TRAMs. ${ }^{5}$ The main drawbacks of the synthetic routes for these catalysts were that they were corrosive or expensive, and the apparatus for microwaving and sonication was infrequently put to use. Moreover, the desired TRAMs required a tedious workup process. Motivated by the above-mentioned literature survey, herein, we chose excellent silica-coated magnetic nanoparticles (MNP) of modified polyphosphoric acid (PPA) as a reusable, facileoperational and green solid support for the gram-scale generation of TRAMs under a mild reaction condition and open-vessel conditions. Among these synthetic catalysts towards TRAMs, to the best of our knowledge, no MNP-mediated synthetic reports have been documented. ${ }^{26-30}$ However, recent examples on chiral organophosphoric acid (OrganoPPA)-mediated enantioselective synthesis of TRAMs have been developed. ${ }^{31-35}$ To deserve to be mentioned, Zhao ${ }^{36}$ and Walsh ${ }^{37}$ have reported the novel and efficient synthesis of TRAMs via palladium-catalyzed cross-coupling reaction. For the synthetic applications on the combination of MNP and PPA, a few examples have been reported on the establishment of thioxoquinazolinone, β-acetamido ketone, pyranopyrazole, and chromeno[4,3-b]chromene skeletons. ${ }^{38-41}$ On the basis of the above recorded observations, we present an efficient, one-step synthetic route towards TRAMs 4 via a Friedel-Crafts reaction and Baeyer condensation of substituted aryl aldehydes $\mathbf{1}$ and oxygenated arenes 2 in the presence of freshly prepared silica-coated magnetic nanoparticles of modified Brønsted acids (MNP-BA) 3a-c. Among the overall reaction processes, only water was generated as the by-product. The use of nanostructured materials as support for different types of functional transformations remains an attractive field to organic chemists. The nature of the magnetic nanoparticle catalysts usually allows for facile-operational purification, an easy-recovered process and repeated-cycling activation.

The initial study commenced with the treatment of simple benzaldehyde ($\mathbf{1 a} ; \mathrm{Ar}=\mathrm{Ph}, 0.53 \mathrm{~g}, 5.0 \mathrm{mmol})$ with veratrole [2a; $\left.\mathrm{Ar}^{\prime}=3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; 1.38 \mathrm{~g}, 10.0 \mathrm{mmol}\right]$. After perusing review articles on MNP-BA-promoted synthetic applications, ${ }^{26-30}$ three that are known and well-prepared, $\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA (3a), ${ }^{38,39} \mathrm{Ni}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Fe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA (3b), ${ }^{38}$ and $\mathrm{CuFe}_{2} \mathrm{O}_{4} @ \mathrm{SO}_{3} \mathrm{H}(\mathbf{3 c}),{ }^{41}$ were examined. First, by using 3a ($10 \mathrm{~mol} \%$), only a 12% yield of 4 a was obtained in the presence of $\mathrm{MeCN}(1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 5 hours (Table 1, entry 1). By changing the solvent to toluene, a similar yield (20\%) was obtained (entry 2). However, CHCl_{3} and DME provided modest yields (47% and 61%, entries 3,4). For MeNO_{2} and DMF, better yields (70% and 90%) were observed (entries 5, 6). From the results, we found that more polar solvent could increase the yield of 4a. With the results in mind, the optimal reaction time was surveyed next by controlling 3a as the promoter and DMF as the solvent. To increase the isolated yield, elongated times (10,15 , and 20 h) were
investigated. In entries $7-9$, we found that three reaction times provided yields of nearly $85 \%, 82 \%$, and 80%, respectively. From the experimental results, we understood that longer reaction times (10,15 or 20 h) did not enhance the yield of 4a.

Table 1 Reaction Conditions ${ }^{\text {a }}$

${ }^{\text {a }}$ Reactions were run on a 5.0 mmol scale with $\mathbf{1 a}(530 \mathrm{mg})$, 2a (1380 mg , $10.0 \mathrm{mmol})$, solvent (1 mL), and $3 \mathrm{a}-\mathbf{c}\left(250 \mathrm{mg}, \sim 10 \mathrm{~mol} \%\right.$) at $25^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Isolated yields.
${ }^{\text {c }}$ At $80^{\circ} \mathrm{C}$.
${ }^{\text {d }}$ Reflux ($154{ }^{\circ} \mathrm{C}$).
${ }^{e}$ DMF (5 mL).
${ }^{\mathrm{f}}$ Solvent-free condition.
${ }^{9}$ Amount of 3a used: $500 \mathrm{mg}, \sim 20 \mathrm{~mol} \%$.
${ }^{\text {h }}$ Complex unknown mixture ($\sim 10 \%$) was isolated.

Furthermore, reaction temperature screening was performed. By elevating the temperature to $80^{\circ} \mathrm{C}$, a 70% yield of $\mathbf{4 a}$ was isolated, but when the reaction was conducted at a reflux temperature $\left(154{ }^{\circ} \mathrm{C}\right)$, the yield of $\mathbf{4 a}$ was quickly decreased to 39% (Table 1, entry 10). It is obvious that the reaction was appropriate under a room temperature-dependent condition. A possible reason could be that elevating the temperature could destroy the magnetic nanoparticle's structure stepwise such that catalytic amounts of 3a could not promote the generation of $\mathbf{4 a}$ efficiently. On the basis of the above-mentioned data, DMF volumes were studied. After diluting the reaction concentration from 1 mL to 5 mL , a slightly lower yield (78%) was obtained (entry
11). Under solvent-free conditions, however, a neat solution system provided similar yields (82%, entry 12). Compared with entry 6 (1 mL DMF), neither of them obtained higher yields of 4a. In entry 13 , increasing the catalytic amounts ($10 \rightarrow 20 \mathrm{~mol} \%$) of 3a, the same yield (85%) of 4a was isolated. This meant that $10 \mathrm{~mol} \%$ amount of 3 a was enough to produce a better yield of $\mathbf{4 a}$. Subsequently, $\mathbf{3 b}$ and $\mathbf{3 c}$ were checked. When the reaction was treated with $\mathbf{3 b}$, the provided yield (70\%) was lower than 3a (entry 14). According to the results, we found that $\mathrm{NiFe}_{2} \mathrm{O}_{4}$ had more reactive magnetic nanoparticles than $\mathrm{Ni}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Fe}_{2} \mathrm{O}_{4}$ due to the higher component of nickel increasing the yield of 4a. On the other hand, changing the source of the Brønsted acid from phosphoric acid to sulfonic acid, 3c was tested. However, 4a was isolated in a lower yield (63\%) along with a 10% yield of a complex unknown mixture (entry 15). For the phenomenon of low yield, we envisioned that the sulfonic acid residue on 3c was a stronger Brønsted acid than PPA such that complex products were detected. Finally, by removing MNP-dispersion, a simple solid support of SiO_{2}-PPA $(250 \mathrm{mg})$ was tested, ${ }^{42}$ and the obtained yield (80%, entry 16) was lower than 3a. Compared with 3a (entry 6, 90\%) and SiO_{2}-PPA (entry 16, 80\%), 3a provided a higher yield than SiO_{2}-PPA. On the basis of the results, we envisioned that MNP should also play the Lewis acid role to catalyze the reaction process such that the yield of $\mathbf{4 a}$ was improved from 80% to 90%. From these observations, we concluded that entry 6 provided optimal conditions for the formation of $\mathbf{4 a}$ (90\%) via a 3a-promoted intermolecular FriedelCrafts reaction and Baeyer condensation of 1a with 2a.

On the basis of our experimental results, a plausible mechanism for the formation of $\mathbf{4 a}$ is illustrated in Scheme
2. Initially, coupling 1a with 3a yields A via an intermolecular proton exchange. With the involvement of $\mathbf{2 a}$, the methoxy group on 2a can trigger the para-carbon to attack the protonated carbonyl group of 1a yielding \mathbf{B} and 3a with a phosphate ion. Following the aromatization process, 3a with a phosphate ion abstracts the proton from \mathbf{B} to lead to C. After protonation of the hydroxyl group on \mathbf{C} with the resulting 3a, D having an oxonium ion, can be formed. Then, by the electron-donating ability of the para-methoxy group, water can be removed from the dibenzylic position to afford \mathbf{E}. Subsequently, by the involvement of another $\mathbf{2 a}$, \mathbf{F} is generated via the above-mentioned intermolecular addition. Finally, after dehydrogenative aromatization by 3a with a phosphate ion, 4a can be formed spontaneously along with the recovery of 3a.

To explore the substrate scope and limitations of this route, diversified aryl aldehydes 1a-x were reacted with substituted oxygenated arenes $\mathbf{2 a - i}$ to afford functionalized TRAMs 4a-t, 4u-ah in the presence of 3a, as shown in Table 2. With optimal conditions established (Table 1, entry 6) and a plausible mechanism proposed (Scheme 2), we found that this route allowed a direct Friedel-Crafts reaction and Baeyer condensation under mild conditions in the range of moderate to good yields (Table 2, entries 1-34, 80-94\%). By controlling dioxygenated 2a as the arene source, entries 123 showed that different Ar groups of 1a-x with halogen (fluoro, bromo, dichloro), electron-neutral (methyl, dimethyl), electron-withdrawing (nitro, trifluoromethyl, methyl ketone, formyl) and electron-releasing (mono-, di- or trioxygenated) groups, and carbocyclic (2-naphthyl) and heterocyclic (2-thienyl, 2-pyridyl, 2-furyl) groups, etc. did not affect the efficient formations of $\mathbf{4 a - x}$ except for $\mathbf{4 t}$. The

Scheme 2 Plausible mechanism
molecular structure of $\mathbf{4 e}$ was determined by single-crystal X-ray analysis. ${ }^{43}$ Also deserving mention, entry 13 showed that Ar with both one electron-withdrawing nitro group and two electron-donating oxygenated groups produced 4 m in an 84% yield.

Unexpectedly, 1s could produce an 84% yield of the product $\mathbf{4 s}$. However, when treatment of $2 \mathbf{a}$ with $\mathbf{1 t}$ with a 2 -furyl group was undertaken, no desired product $\mathbf{4 t}$ was isolated, and only an unidentified and unknown complex mixture was detected due to the low aromaticity of the furan ring resulting in the phenomenon (Table 2, entry 20). By the use of $\mathrm{SiO}_{2}-\mathrm{PPA}$ (Table 1, entry 16), 4t could not be still obtained. From the results, we believe that 2 -furyl
group was unstable under the PPA/DMF condition. For the bis-formyl group of $\mathbf{1 u}$, in particular, the optimal reaction condition controlled one formyl group of $\mathbf{1 u}$ to react with two equivalents of 3a selectively, and the asymmetrical $\mathbf{4 u}$ with one formyl residue could be generated in a 90% yield (entry 21). On the other hand, when treatment of $\mathbf{2 a}$ (2.0 equiv) was undertaken with $\mathbf{1 v}$ having two kinds of different carbonyl synthons, the formyl and acetyl, respectively, only the formyl group could be converted to $\mathbf{4 v}$ (entry 22). However, the acetyl substituent was not initiated in the Friedel-Crafts reaction. In entry 23, 1w with one formyl and one nitrile groups showed similar results.

Table 2 Synthesis of 4a-ag and 4ah-1 ${ }^{\text {a }}$

Entry	1, $\mathrm{Ar}=$	2, $\mathrm{Ar}^{\prime}=$	4, Yield (\%) ${ }^{\text {b }}$
25	1x, 3,4,5-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2b, 1,2-CH2O2 $\mathrm{C}_{6} \mathrm{H}_{4}$	4y, 84
26	1o, 3,4-Cl $\mathrm{C}_{6} \mathrm{H}_{3}$	2c, 1,2-($\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4z, 85
27	1h, 2-naphthyl	2c, 1,2-($\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4aa, 85
28	1x, 3,4,5-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2c, 1,2-($\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4ab, 84
29	1x, 3,4,5-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2d, 1,2-($\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4ac, 89
30	1x, 3,4,5-(MeO) $3 \mathrm{C}_{6} \mathrm{H}_{2}$	2e, 1,2-($\left.\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4ad, 80
31	1x, 3,4,5-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2f, 1,2,3-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	4ae, 80
32	1x, 3,4,5-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2g, 1,2,3-($\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	4af, 82
33	1x, 3,4,5-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	2h, 1,2,3-($\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	4ag, 81
34	1x, 3,4,5-(MeO) $3_{3} \mathrm{C}_{2}$	2i, 1,3,5-(MeO) $3 \mathrm{C}_{6} \mathrm{H}_{3}$	4ah, - ${ }^{\text {d }}$
${ }^{\text {a }}$ Reactions were run on a 5.0 mmol scale with $\mathbf{1 a - x}, \mathbf{2 a - i}(10.0 \mathrm{mmol}), \mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}-\mathrm{PPA}(\mathbf{3 a} ; 250 \mathrm{mg}, \sim 10 \mathrm{~mol} \%), \mathrm{DMF}(1 \mathrm{~mL}), 10 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\text {c }}$ Complex unknown mixture was isolated. ${ }^{\text {d }}$ Product 4ah-1 (30\%) was isolated.			

Furthermore, after elongating the dioxygenated aliphatic carbon chain from a one-carbon 2a, 2b to a four-carbon side chain, 2c was examined. In Table 2, entries 26-28, 2c with a shorter bis-n-butoxy arm provided $\mathbf{4 z}$, 4aa, and 4ab in $85 \%, 85 \%$ and 74% yield, respectively. With these results in hand, both 4ac (medium n-octyloxy chain) and 4ad (longer n-dodecyloxy group) could be obtained in good yields (89% and 80%, entries 29,30).

This was a quite convenient route used to obtain TRAMs skeleton having different lipid-containing side chains. After increasing the chain number from dimethoxy 2a to trimethoxy (for $\mathbf{2 f}$), the yield of 4ae could be maintained (80%, Table 2, entry 31), and both contiguous 1,2,3-tri-n-butyloxy ($\mathbf{2 g}$) and 1,2,3-tri-n-octyloxy ($\mathbf{2 h}$) also produced 4af and 4ag in good yields (82% and 81%, entries 32,33). By the use of cold hexane as the solvent, interestingly, these nonpolar products with four-carbon, eight-carbon, and twelvecarbon side chains were dissolved easily such that the overall purification process was easy to handle. After searching the literature on the preparation of TRAMs with two to six lipid chains, however, no studies were found on related synthetic work. Therefore, the present work provides a novel route for synthesizing the TRAMs with four or six lipid-conjugated arms. In particular, no desired 4ah was detected, and 4ah- $\mathbf{1}$ was obtained in only a 30% yield via the reaction of $\mathbf{1 x}$ (1.0 equiv) and $\mathbf{2 i}$ (2.0 equiv) with a separated $1,3,5$-trimethoxy group (entry 34). Especially, two equivalents of $\mathbf{1 x}$ were installed into the formation of $\mathbf{4 a h} \mathbf{- 1}$ in the presence of excess amounts of $\mathbf{2 l}$ (Scheme 3). This reasonable mechanism showed that the initial intermediate \mathbf{I} was formed by the reaction of the same equivalent of $\mathbf{1 x}$ and $\mathbf{2 l}$. In the next reaction of \mathbf{I}, a competitive behavior between $\mathbf{1 x}$ and $\mathbf{2 i}$ was formed. When the reaction of I treated $\mathbf{2 i}$, the expected $\mathbf{4 a h}$
could be formed, but we could not isolate 4ah. Therefore, we envisioned that I preferred to react with $\mathbf{1 x}$ over $\mathbf{2 l}$. For the generation of intermediate II, a possible reason could be that the oxygenated group on I can promote the paracarbon to easily attack the formyl group of $\mathbf{1 x}$. After accomplishing the aromatization of II, the desired 4ah- $\mathbf{1}$ was generated. This synthetic route provided highly effective four $\mathrm{C}-\mathrm{C}$ bond formations. The unique tricyclic molecular structure of 4ah-1, with an anthracene core, was determined by single-crystal X-ray analysis. ${ }^{43}$

Encouraged by the above experimental results, synthesis of the asymmetrical TRAMs skeletons was investigated next (Scheme 4). By involvement of $\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}-\mathrm{PPA}$ (3a) as the acidic support, the initial reaction of model p-tolualdehyde (1c) with the same equivalent of two oxygenated arenes $\mathbf{2 f}$ (1.0 equiv) and $\mathbf{2 j}$ (1.0 equiv) produced 4ai in an 80% yield. The experiment revealed that the formyl group on $\mathbf{1 c}$ could be reacted with $\mathbf{2 f}$ first to generate a secondary alcohol moiety (for the generation of intermediate \mathbf{A}) followed by the sequential introduction of anisole (2j) via a well-ordered intermolecular Friedel-Crafts reaction sequence. Controlling the starting substrates $\mathbf{1 c}$ and $\mathbf{2 f}, \mathbf{2 a}, \mathbf{2 b}$, and 2c produced 4aj, 4ak, and 4al in 78\%, 76\% and 72\% yield, respectively. By similar reaction conditions, after adjusting aldehyde 1c with an electron-neutral group to $\mathbf{2 f}$ with an electron-withdrawing group and changing $\mathbf{2 f}$ with a trimethoxy group to $\mathbf{2 a}$ with a dimethoxy group, four TRAMs 4am-ap were produced in a range of $70-76 \%$ yields by the reaction of $\mathbf{2 j}, \mathbf{2 b}, \mathbf{2 c}$, and $\mathbf{2 f}$. Furthermore, 4aq-as were obtained in $76-80 \%$ yields by the combination of bicyclic $\mathbf{1 h}, \mathbf{2 a}$, and $\mathbf{2 j}$, $\mathbf{2 f}$ and $\mathbf{2 b}$. This was an efficient transformation for the magnetic nanoparticle-mediated preparation of asymmetrical TRAMs skeletons.

Scheme 3 Plausible mechanism of formation of 4ah-1

Scheme 4 Stepwise synthesis of 4ai-as

On the basis of the abovementioned results, a linear dendrimer-like TRAMs structure was examined next (Scheme 5). Double condensation of 1,4-diformylbenzene (1u) with four equivalents of 2a produced 4at in a 58% yield along with two equivalents of water. As an extension of the $\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}-\mathrm{PPA}(\mathbf{3 a})$-mediated synthesis of triarylmethanes (TRAMs), we were able to synthesize 11 H -dibenzo[b,e]azepine skeleton (Scheme 6). 11H-Dibenzo[b,e]azepine is a
versatile core in useful synthetic intermediates ${ }^{44,45}$ and bioactive molecules. ${ }^{46,47}$ Furthermore, by using $\mathbf{4 k}$ as the starting material, tricyclic 5 was obtained in a 40% yield in three-steps including: (1) reduction of the nitro group on $\mathbf{4 k}$, (2) N -acylation of the resulting amine with excess acetyl chloride in the presence of triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$), and (3) trifluoroboron etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$-mediated BischlerNapieralski cyclization of the corresponding amide.

Scheme 5 Synthesis of 4at

Scheme 6 Synthesis of 5

Scheme 7 Large-scale synthesis of 4a

Because of the potential application of this protocol in synthesis of various TRAMs, attempts at large scale-up of the transformation would improve the significance of the results. Thus, the development of a re-used 3a-mediated 10 grams-scale route was highly in demand. As shown in Scheme 7, re-cycled 3a (2.0 g)-mediated reaction of benzaldehyde (1a; $4.24 \mathrm{~g}, 40 \mathrm{mmol}$) and veratrole ($\mathbf{2 a} ; 11.04 \mathrm{~g}, 80$ mmol) could produce $\mathbf{4 a}$ in a 76% yield (11.07 g) in DMF (8 mL) at $25^{\circ} \mathrm{C}$ for 5 hours. Compared with 5 mmol scale of $\mathbf{1 a}$ (90%, Table 2 , entry 1), 40 mmol scale provided a lower yield (76\%). Although the obtained yield was lower, the 10 grams-scale synthetic route of TRAMs was well-established.

In summary, we have developed a gram-scale, environmentally friendly, one-step Friedel-Crafts type route for the synthesis of symmetrical and asymmetrical functionalized triarylmethanes (TRAMs) via silica coated magnetic nanoparticles of modified polyphosphoric acid ($\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA)-mediated intermolecular condensation of substituted aryl aldehydes with 2 equivalents of oxygenated arenes. A related plausible mechanism has been proposed. The uses of various reaction conditions were investigated for efficient transformation. Further investigations regarding the synthetic application of TRAMs will be conducted and published in due course.

All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry N_{2} with magnetic stirring. Products in organic solvents were dried with anhyd MgSO_{4} before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz , respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (J) are given in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a Finnigan/Thermo Quest MAT 95XL mass spectrometer. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

The starting substrates $\mathbf{1 a - \mathbf { y }}$ and $\mathbf{2 a - j}$ were purchased commercially and used without further purification. For three freshly prepared silicacoated magnetic nanoparticles of modified Brønsted acids (MNP-BA), $\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA (3a), $\quad \mathrm{Ni}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Fe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA (3b) and $\mathrm{CuFe}_{2} \mathrm{O}_{4} @ \mathrm{SO}_{3} \mathrm{H}(\mathbf{3 c})$, these compounds were known and preparation methods were identical with those in the literature. ${ }^{38-41}$

Triarylmethanes 4a-s, 4u-ag, and 4ah-1; General Procedure 1

$\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}-\mathrm{PPA}$ (3a; $250 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added to a stirred solution of aryl aldehyde $\mathbf{1}(5.0 \mathrm{mmol})$ and oxygenated arene $\mathbf{2}(10.0$ $\mathrm{mmol})$ in DMF (1 mL) at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h . Upon completion, 3a could be placed on the side wall of the reaction vessel with the aid of an external magnet, then 3a was isolated, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and dried to reuse in the next run. Then, combined DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were concentrated under reduced pressure to afford the crude product. Purification on silica gel (hexanes/EtOAc 50:1 to 10:1) afforded compounds 4a-s, 4u-ag, and 4ah-1.

4,4'-(Phenylmethylene)bis(1,2-dimethoxybenzene) (4a)

Prepared according to the general procedure 1 from $\mathbf{1 a}$ ($530 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $90 \%(1639 \mathrm{mg})$; white solid; mp $126-128^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.14-7.12 (m, 2 H$), 6.78$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.61 (dd, $J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.46 ($\mathrm{s}, 1 \mathrm{H}$), 3.84 (s, 6 H), 3.75 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.5(2 \times), 147.2(2 \times), 144.1$, 136.5, $129.0(2 \times), 128.0(2 \times), 126.0(2 \times), 121.2(2 \times), 112.6(2 \times)$, $110.7(2 \times), 55.7,55.6(2 \times), 55.5(2 \times)$
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{4}: 365.1753$; found: 365.1745.

4,4'-((3-Fluorophenyl)methylene)bis(1,2-dimethoxybenzene) (4b) Prepared according to the general procedure 1 from $\mathbf{1 b}$ ($620 \mathrm{mg}, 5.0$ mmol) and $\mathbf{2 a}(1380 \mathrm{mg}, 10.0 \mathrm{mmol})$; yield: $94 \%(1796 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H})$, 6.82-6.79 (m, 1 H), $6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.59 (dd, $J=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.43 ($\mathrm{s}, 1 \mathrm{H}$), 3.86 ($\mathrm{s}, 6 \mathrm{H}$), 3.77 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.5(\mathrm{~d}, \mathrm{~J}=245.6 \mathrm{~Hz}), 148.8(2 \times)$, $147.6(2 \times), 147.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 136.0(2 \times), 130.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 125.9$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}), 121.3(2 \times), 120.9(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=23.5 \mathrm{~Hz})$, $112.6(2 \times), 110.9(2 \times), 55.82(2 \times), 55.79(2 \times), 55.6(\mathrm{~d}, J=1.5 \mathrm{~Hz})$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FO}_{4}: 383.1659$; found: 383.1664.

4,4'-(p-Tolylmethylene)bis(1,2-dimethoxybenzene) (4c)

Prepared according to the general procedure 1 from $\mathbf{1 c}(600 \mathrm{mg}, 5.0$ $\mathrm{mmol})$ and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $94 \%(1777 \mathrm{mg})$; white solid; mp 141-143 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.02(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{dd}, J=$ 2.0, 8.4 Hz, 2 H), 5.42 (s, 1 H$), 3.86$ (s, 6 H$), 3.77$ (s, 6 H$), 2.33$ (s, 3 H$)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.6(2 \times), 147.3(2 \times), 141.2$, $136.8(2 \times), 135.6,129.0(2 \times), 128.8(2 \times), 121.2(2 \times), 112.7(2 \times)$, $110.7(2 \times), 55.72(2 \times), 55.68(2 \times), 55.4,20.9$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{4}: 379.1909$; found: 379.1915.

4,4'-((4-Methoxyphenyl)methylene)bis(1,2-dimethoxybenzene)

 (4d)Prepared according to the general procedure 1 from $1 \mathbf{d}(680 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 90% (1774 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J=$ $2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.40(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.9,148.6(2 \times), 147.3(2 \times)$, 137.0, $136.4(2 \times), 130.9(2 \times), 121.2(2 \times), 113.5(2 \times), 112.6(2 \times)$, $110.7(2 \times), 55.74(2 \times), 56.69(2 \times), 55.1,55.0$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{5}: 395.1859$; found: 395.1866.

Tris(3,4-dimethoxyphenyl)methane (4e)

Prepared according to the general procedure 1 from $\mathbf{1 e}(830 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $94 \% ~(1994 \mathrm{mg})$; white solid; mp 142-144 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 3 \mathrm{H}), 6.59(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 9 \mathrm{H}), 3.76$ (s, 9 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.7(3 \times), 147.4(3 \times), 136.9(3$ \times), $121.3(3 \times), 112.7(3 \times), 110.8(3 \times), 55.81(3 \times), 55.78(3 \times), 55.4$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{6}$: 425.1964; found: 425.1963.

Single-Crystal X-ray Data

Crystals of compound $\mathbf{4 e}$ were grown by slow diffusion of EtOAc into a solution of compound $\mathbf{4 e}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P $2_{1}, a=10.0496(9) \AA, b=8.4754(10) \AA, c=14.0842(18) \AA, V=$ $1149.9(2) \AA^{3}, Z=2, d_{\text {calcd }}=1.226 \mathrm{~g} / \mathrm{cm}^{3}, F(000)=452,2 \theta$ range $1.508-$ $25.086^{\circ}, \mathrm{R}$ indices (all data) $\mathrm{R} 1=0.1487, \mathrm{wR} 2=0.1290$.

5-(Bis(3,4-dimethoxyphenyl)methyl)benzo[d][1,3]dioxole (4f)

Prepared according to the general procedure 1 from $\mathbf{1 f}(750 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $93 \%(1898 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{dt}, J=$ 2.0, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.7(2 \times), 147.4(2 \times), 147.5$, 145.9, 138.3, 136.7, $122.2(2 \times), 121.2(2 \times), 112.6(2 \times), 110.8(2 \times)$, 109.7, 107.9, $100.8(2 \times$), $55.79(2 \times), 55.77,55.5$.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{6}: 409.1651$; found: 409.1659.

4-(Bis(3,4-dimethoxyphenyl)methyl)-1,1'-biphenyl (4g)

Prepared according to the general procedure 1 from $\mathbf{1 g}$ ($910 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $91 \%(2003 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2$ H), 7.45-7.41 (m, 2 H), 7.35-7.31 (m, 1 H$), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}$, 2 H), $5.50(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.7(2 \times), 147.5(2 \times), 143.4$, 140.7, 139.0, $136.6(2 \times), 129.6(2 \times), 128.7(2 \times), 127.1,126.89(2 \times)$, $126.86(2 \times), 121.3(2 \times), 112.7(2 \times), 110.8(2 \times), 55.78(2 \times), 55.76(2$ \times), 55.5.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{4}: 441.2066$; found: 441.2078.

2-(Bis(3,4-dimethoxyphenyl)methyl)naphthalene (4h)

Prepared according to the general procedure 1 from $\mathbf{1 h}(780 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $87 \%(1802 \mathrm{mg})$; white solid; mp 162-164 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAC).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1$ H), 7.75-7.72 (m, 1 H$), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=$ 2.0, $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.81 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (dd, J = 2.0, 8.4 Hz, 2 H), $5.63(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.7(2 \times), 147.4(2 \times), 141.9$, $136.4,133.3,132.0,127.9,127.8,127.7,127.5,127.4(2 \times), 125.9$, $125.5,121.5(2 \times), 112.7(2 \times), 110.8(2 \times), 55.9,55.74(2 \times), 55.71(2$ $\times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{4}: 415.1909$; found: 415.1918.

4,4'-((2-Bromo-4,5-dimethoxyphenyl)methylene)bis(1,2-dimethoxybenzene) (4i)

Prepared according to the general procedure 1 from $1 \mathbf{i}$ ($1220 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $89 \%(2234 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.04(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.63 (d, J = 2.0 Hz, 2 H), 6.52 (dd, J = 2.0, $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.45(\mathrm{~s}, 1 \mathrm{H}), 5.71$ (s, 1 H), 3.85 (s, 9 H$), 3.76$ (s, 6 H$), 3.62(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.7(2 \times), 148.1,148.0,147.5(2$ $\times), 135.6,135.5,121.3(2 \times), 115.6(2 \times), 115.2,113.8,112.7(2 \times)$, $110.7(2 \times), 56.1,55.9,55.8(2 \times), 55.7(2 \times), 54.6$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrO}_{6}$: 503.1069; found: 503.1077.

4,4'-((3-Methoxyphenyl)methylene)bis(1,2-dimethoxybenzene) (4j)

Prepared according to the general procedure 1 from $\mathbf{1 j}$ ($680 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $90 \%(1774 \mathrm{mg})$; white solid; mp 108-110 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.76-6.66(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H})$, 3.85 (s, 6 H), 3.77 (s, 6 H), 3.74 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.5,148.7(2 \times), 147.4(2 \times)$, 145.9, 136.5, $129.1(2 \times), 121.7,121.3(2 \times), 115.3,112.6(2 \times), 111.2$, $110.8(2 \times), 55.81,55.75(2 \times), 55.7(2 \times), 55.0$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{5}$: 395.1859; found: 395.1864.

4,4'-((2-Nitrophenyl)methylene)bis(1,2-dimethoxybenzene) (4k)

Prepared according to the general procedure 1 from $\mathbf{1 k}(755 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $86 \%(1759 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(\mathrm{dd}, J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}$, $J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1$ H), 6.77 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=2.0,8.4$ Hz, 2 H), 6.17 ($\mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.7,148.9(2 \times), 147.8(2 \times)$, $138.5,134.6,132.3,131.7,127.4(2 \times), 124.6,121.3(2 \times), 112.8(2 \times)$, $110.8(2 \times), 55.81(2 \times), 55.79(2 \times), 50.5$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{6}: 410.1604$; found: 410.1598.

4,4'-((3-(Trifluoromethyl)phenyl)methylene)bis(1,2-dimethoxybenzene) (41)

Prepared according to the general procedure 1 from 11 ($870 \mathrm{mg}, 5.0$ $\mathrm{mmol})$ and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $87 \%(1880 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2$ H), $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, 2 H), 6.57 (dd, J = 2.0, 8.4 Hz, 2 H), 5.49 (s, 1 H), 3.86 (s, 6 H), 3.77 (s, 6 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.9(2 \times), 147.7(2 \times), 145.3$, $135.7,132.6,130.6(\mathrm{q}, ~ J=31.0 \mathrm{~Hz}), 128.6(2 \times), 125.9(\mathrm{q}, J=3.8 \mathrm{~Hz})$, $124.1(\mathrm{q}, J=269.9 \mathrm{~Hz}), 123.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 121.3(2 \times), 112.6(2 \times)$, $111.0(2 \times), 55.81(2 \times), 55.79(2 \times), 55.6$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}_{4}: 433.1627$; found: 433.1634.

4-(Bis(3,4-dimethoxyphenyl)methyl)-2-methoxy-6-nitrophenol (4m)

Prepared according to the general procedure 1 from $\mathbf{1 m}(985 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 84% (1912 mg); white solid; mp 143-145 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.68(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.55 (dd, J = 2.0, $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.36 ($\mathrm{s}, 1 \mathrm{H}$), 3.83 (s, 6 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 3.75 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.6,148.8(2 \times), 147.7(2 \times)$, 144.9, 135.6, $135.0(2 \times), 133.4,121.1(2 \times), 119.0,115.7,112.3(2 \times)$, $110.9(2 \times), 56.5,55.70(2 \times), 55.68(2 \times), 55.0$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{8}: 456.1659$; found. 456.1668.

4,4'-((3,5-Dimethylphenyl)methylene)bis(1,2-dimethoxybenzene) (4n)
Prepared according to the general procedure 1 from 1n ($670 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $88 \%(1726 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.86(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.74 (s, 2 H), 6.70 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.38$ (s, 1 H$), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.6(2 \times), 147.3(2 \times), 144.1(2$ \times), 137.5, 136.8, $127.8(2 \times), 127.0(2 \times), 121.3(2 \times), 112.7(2 \times), 110.7$ $(2 \times), 55.73,55.70(4 \times), 21.2(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{4}$: 393.2066; found: 393.2074.

4,4'-((3,4-Dichlorophenyl)methylene)bis(1,2-dimethoxybenzene)

 (40)Prepared according to the general procedure 1 from 10 ($870 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 90% (1944 mg); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H})$, 3.76 (s, 6 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.8(2 \times), 147.7(2 \times), 144.7$, $135.3(2 \times), 132.2,131.0,130.1,130.0,128.6,121.2(2 \times), 112.4(2 \times)$, $110.9(2 \times), 55.7(4 \times)$, 54.9.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{4}: 433.0973$; found: 433.0968.

4,4'-((4-Hydroxyphenyl)methylene)bis(1,2-dimethoxybenzene)

(4p)
Prepared according to the general procedure 1 from 1p ($610 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $90 \%(1711 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.75$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59$ (dd, $J=$ 2.0, $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.37 (s, 1 H), 5.20 (br s, 1 H), 3.85 (s, 6 H), 3.76 (s, 6 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.0,148.7(2 \times), 147.3(2 \times)$, $137.1(2 \times), 136.4,130.3(2 \times), 121.3(2 \times), 115.0(2 \times), 112.7(2 \times)$, $110.8(2 \times), 55.81(2 \times), 55.77(2 \times), 55.0$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{5}: 381.1702$; found: 381.1709.

4,4'-((4-Chlorophenyl)methylene)bis(1,2-dimethoxybenzene) (4q) Prepared according to the general procedure 1 from 1q ($700 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 91% (1811 mg); white solid; mp 159-160 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.04(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=$ $2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.41 ($\mathrm{s}, 1 \mathrm{H}$), 3.85 ($\mathrm{s}, 6 \mathrm{H}$), 3.76 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.7(2 \times), 147.5(2 \times), 142.8$, $136.0(2 \times), 131.9,130.5(2 \times), 128.3(2 \times), 121.2(2 \times), 112.5(2 \times)$, $110.8(2 \times), 55.73(2 \times), 55.71(2 \times), 55.1$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClO}_{4}: 399.1363$; found: 399.1369.

2-[Bis-(3,4-dimethoxyphenyl)methyl]-5-nitrothiophene (4r)

Prepared according to the general procedure 1 from $\mathbf{1 r}(785 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 83% (1723 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 5 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 3.87$ (s, 6 H$), 3.80(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.3,150.4,149.1,148.4,134.3$ $(2 \times), 128.5(2 \times), 125.8(2 \times), 120.7(2 \times), 111.9(2 \times), 111.1(2 \times), 55.9$ $(2 \times), 55.8(2 \times), 51.9$.

HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{~S}: 416.1168$; found: 416.1175.

3-[Bis-(3,4-dimethoxyphenyl)methyl]pyridine (4s)

Prepared according to the general procedure 1 from 1s ($535 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $84 \%(1534 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.49(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H})$, 3.86 (s, 6 H), 3.77 (s, 6 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.4,149.1(2 \times), 147.9(2 \times)$, $146.5(2 \times), 140.5,137.8,135.0,123.6,121.3(2 \times), 112.5(2 \times), 111.1(2$ \times), $55.88(2 \times), 55.86(2 \times), 53.4$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}: 366.1705$; found: 366.1714.

4-[Bis-(3,4-dimethoxyphenyl)methyl]benzaldehyde (4u)

Prepared according to the general procedure 1 from $\mathbf{1 u}(670 \mathrm{mg}, 5.0$ $\mathrm{mmol})$ and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $90 \%(1765 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.96(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.57 (dd, J = 2.0, $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.50(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.8,151.5,148.8(2 \times), 147.7(2$ \times), $135.4(2 \times), 134.6,129.9(2 \times), 129.7(2 \times), 121.3(2 \times), 112.5(2 \times)$, $110.9(2 \times), 55.9,55.8(2 \times), 55.7(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{5}$: 393.1702; found: 393.1711.

1-(3-(Bis(3,4-dimethoxyphenyl)methyl)phenyl)ethan-1-one (4v)
Prepared according to the general procedure 1 from $\mathbf{1 v}$ ($740 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $90 \%(1828 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dt}, J=0.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 2$ H), 5.49 (s, 1 H$), 3.86$ (s, 6 H$), 3.76$ (s, 6 H$), 2.54(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2,148.8(2 \times), 147.6(2 \times)$, 145.0, 137.2, $136.0(2 \times), 133.9,129.0,128.5,126.4,121.3(2 \times), 112.6$ $(2 \times), 110.9(2 \times), 55.82(4 \times), 55.76,26.6$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{5}$: 407.1859; found: 407.1853.

4-[Bis-(3,4-dimethoxyphenyl)methyl]benzonitrile (4w)

Prepared according to the general procedure 1 from $\mathbf{1 w}(655 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $93 \%(1810 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.79$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54$ (dd, $J=$ $2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=150.0,149.0(2 \times), 147.9(2 \times)$, $135.1(2 \times), 132.1(2 \times), 130.0(2 \times), 121.3(2 \times), 118.9,112.6(2 \times)$, $111.0(2 \times), 110.2,55.88,55.85(2 \times), 55.8(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{4}: 390.1705$; found: 390.1711 .

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2-dimethoxybenzene) (4x)

Prepared according to the general procedure 1 from $\mathbf{1 x}(980 \mathrm{mg}, 5.0$ mmol) and 2a ($1380 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $89 \%(2021 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.77(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=2.0$
$\mathrm{Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.84$ (s, 6 H$), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.8(2 \times), 148.6(2 \times), 147.4(2$
\times), $139.8(2 \times), 136.4(2 \times), 121.2(2 \times), 112.5(2 \times), 110.7(2 \times), 106.4(2$ \times), 60.7, $55.9(3 \times), 55.70(2 \times), 55.68(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{7}: 455.2070$; found: 455.2076.

5,5'-((3,4,5-Trimethoxyphenyl)methylene)bis(benzo[d][1,3]dioxole) (4 y)
Prepared according to the general procedure 1 from $\mathbf{1 x}$ ($980 \mathrm{mg}, 5.0$ mmol) and 2b ($1220 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 84% (1773 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.57$ (dd, $J=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.0(2 \times), 147.6(2 \times), 146.0(2$ $\times), 139.6,137.8(2 \times), 136.5,122.3(2 \times), 109.7(2 \times), 108.0(2 \times), 106.5$ $(2 \times), 100.9(2 \times), 60.8,56.2,56.1(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{7}: 423.1444$; found: 423.1452.

4,4'-((3,4-Dichlorophenyl)methylene)bis(1,2-di-n-butoxybenzene) (4z)

Prepared according to the general procedure 1 from 10 ($870 \mathrm{mg}, 5.0$ mmol) and 2c ($2222 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $85 \%(2551 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93$ (dd, $J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.40(\mathrm{~m}$, $8 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.0(2 \times), 148.0(2 \times), 145.0$, $135.6(2 \times), 132.2,131.2,130.1,130.0,128.7,121.6(2 \times), 115.3(2 \times)$, $113.6(2 \times), 69.0(2 \times), 68.9(2 \times), 55.0,31.4(2 \times), 31.3(2 \times), 19.23(2$ $\times), 19.18(2 \times), 13.9(4 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{Cl}_{2} \mathrm{O}_{4}: 601.2851$; found: 601.2858 .

2-(Bis(3,4-di-n-butoxyphenyl)methyl)naphthalene (4aa)

Prepared according to the general procedure 1 from $\mathbf{1 h}(780 \mathrm{mg}, 5.0$ mmol) and 2c ($2222 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: $85 \%(2475 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1$ H), 7.76-7.73 (m, 1 H$), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=$ $1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (dd, $J=2.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.92(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $6 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.9(2 \times), 147.6(2 \times), 142.2$, $136.6(2 \times), 133.3,132.1,128.1,127.8,127.6,127.5,127.4,125.8$, 125.4, $121.8(2 \times), 115.6(2 \times), 113.5(2 \times), 68.88(2 \times), 68.87(2 \times)$, 55.9, $31.4(2 \times), 31.3(2 \times), 19.2(2 \times), 19.1(2 \times), 13.83(2 \times), 13.81(2$ \times).
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{O}_{4}$: 583.3787; found: 583.3796.

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2-di-n-butoxybenzene) (4ab)

Prepared according to the general procedure 1 from 1x ($980 \mathrm{mg}, 5.0$ mmol) and 2c ($2222 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 84% (2614 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.58$ (dd, J = 2.0, $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.32$ (s, 2 H), 5.31 (s, 1 H$), 3.97$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})$, $1.82-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 8 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9(2 \times), 148.8(2 \times), 147.6(2$ $\times), 140.2,136.8,136.2(2 \times), 121.6(2 \times), 115.5(2 \times), 113.5(2 \times), 106.5$ $(2 \times), 69.0(2 \times), 68.9(2 \times), 60.8,56.0(2 \times), 55.9,31.4(2 \times), 31.3(2 \times)$, $19.21(2 \times), 19.15(2 \times), 13.8(4 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{7}: 623.3948$; found: 623.3955.

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2-bis(n-octyloxy)benzene) (4ac)

Prepared according to the general procedure 1 from 1x ($980 \mathrm{mg}, 5.0$ mmol) and 2d ($3343 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 89% (3768 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.88(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.67 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ (dd, $J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.32 (s, 2 H), 5.32 (s, 1 H), 4.01-3.89 (m, 4 H), 3.88-3.84 (m, 4 H), 3.84 (s, 3 H), 3.72 (s, 6 H), 1.83-1.73 (m, 12 H$), 1.47-1.29(\mathrm{~m}, 34 \mathrm{H}), 0.90-0.87(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9(2 \times), 148.8(2 \times), 147.6(2$ $\times), 140.2,136.8,136.2(2 \times), 130.0(2 \times), 115.4(2 \times), 113.4(2 \times), 106.5$ $(2 \times), 69.3(2 \times), 69.2(2 \times), 60.8,56.0(2 \times), 55.9,31.8(4 \times), 29.4(4 \times)$, $29.3(4 \times), 29.2(4 \times), 26.03(2 \times), 26.00(2 \times), 22.6(4 \times), 14.0(4 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{54} \mathrm{H}_{87} \mathrm{O}_{7}: 847.6452$; found: 847.6448.

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2-bis(n-dodecyloxy)benzene) (4ad)

Prepared according to the general procedure 1 from $\mathbf{1 x}$ ($980 \mathrm{mg}, 5.0$ mmol) and 2e ($4464 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 80% (4284 mg); white solid; mp 59-61 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.57$ (dd, $J=2.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.96$ (t, J = 6.8 Hz, 4 H), 3.87 (t, J = 6.8 Hz, 4 H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})$, 1.83-1.70 (m, 12 H$), 1.49-1.26(\mathrm{~m}, 68 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9(2 \times), 148.5(2 \times), 147.2(2$ \times), 140.2, $136.8(2 \times), 136.2,121.6(2 \times), 115.5(2 \times), 113.5(2 \times), 106.5$ $(2 \times), 69.30(2 \times), 69.26(2 \times), 60.8,55.01(2 \times), 55.96,31.9(2 \times), 29.71$
$(2 \times), 29.69(2 \times), 29.6(8 \times), 29.5(2 \times), 29.39(4 \times), 29.36(4 \times), 29.3(4$ \times), $26.1(4 \times), 26.0(4 \times), 22.7(4 \times), 14.1(4 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{70} \mathrm{H}_{119} \mathrm{O}_{7}$: 1071.8956; found: 1071.8966.

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2,3-trimethoxybenzene) (4ae)

Prepared according to the general procedure 1 from $\mathbf{1 x}(980 \mathrm{mg}, 5.0$ mmol) and 2 f ($1681 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 80% (2057 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.81$ (s, 3 H), 3.72 (s, 6 H), 3.58 ($\mathrm{s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9(2 \times), 152.2(2 \times), 151.5(2$ \times), $142.4(2 \times), 139.5,136.2,130.6(2 \times), 124.0(2 \times), 106.6(2 \times), 106.4$ $(2 \times), 60.8,60.7(2 \times), 60.4(2 \times), 56.0(2 \times), 55.8(2 \times), 43.5$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{9}$: 515.2281 ; found: 515.2290.

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2,3-tri-n-butoxy-

 benzene) (4af)Prepared according to the general procedure 1 from $\mathbf{1 x}$ ($980 \mathrm{mg}, 5.0$ mmol) and $\mathbf{2 g}$ ($2942 \mathrm{mg}, 10.0 \mathrm{mmol}$); yield: 82% (3143 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.91$ (m, 8 H$), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 6 \mathrm{H}), 3.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.55-1.40(\mathrm{~m}$, $12 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 12 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.7(2 \times), 152.0(2 \times), 151.2(2$ $\times), 141.7(2 \times), 140.7(2 \times), 136.0,130.4,124.0(2 \times), 107.0(2 \times), 106.7$ $(2 \times), 73.0(2 \times), 72.8(2 \times), 68.2(2 \times), 60.8,55.9(2 \times), 43.7,32.4(2 \times)$, $32.3(2 \times), 31.4(2 \times), 19.3(2 \times), 19.2(2 \times), 19.1(2 \times), 13.92(2 \times), 13.89$ $(2 \times), 13.8(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{71} \mathrm{O}_{9}$: 767.5098; found: 767.5089.

4,4'-((3,4,5-Trimethoxyphenyl)methylene)bis(1,2,3-tris(n-octyloxy)benzene) (4ag)

Prepared according to the general procedure 1 from 1x ($980 \mathrm{mg}, 5.0$ mmol) and $\mathbf{2 h}(4624 \mathrm{mg}, 10.0 \mathrm{mmol})$; yield: $81 \%(4467 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=8.4$ Hz, 2 H), 6.28 (s, 2 H), 6.03 (s, 1 H), 3.96-3.89 (m, 8 H), 3.81 (s, 3 H), $3.69(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 12 \mathrm{H}), 1.50-1.40$ (m, 12 H$), 1.33-1.22(\mathrm{~m}, 48 \mathrm{H}), 0.90-0.83$ (m, 18 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.7(2 \times), 152.0(2 \times), 151.3(2$ \times), $141.7(2 \times), 140.7(2 \times), 136.0,130.5,124.0(2 \times), 107.0(2 \times), 106.7$ $(2 \times), 73.3(2 \times), 73.2(2 \times), 68.5(2 \times), 60.8,55.9(2 \times), 43.7,31.91(2 \times)$, $31.88(2 \times), 31.8(2 \times), 30.42(2 \times), 30.36(2 \times), 29.7(2 \times), 29.62(2 \times)$, $29.57(2 \times), 29.44(2 \times), 29.41(2 \times), 29.37(4 \times), 29.3(2 \times), 26.20(2 \times)$, $26.17(2 \times), 26.1(2 \times), 22.68(2 \times), 22.66(2 \times), 14.8(6 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{70} \mathrm{H}_{119} \mathrm{O}_{9}: 1103.8854$; found: 1103.8847.

1,2,3,5,6,7-Hexamethoxy-9-(2,4,6-trimethoxyphenyl)anthracene (4ah-1)

Yield: 30% (786 mg); white solid; mp $169-171^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.46(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, 6.32 (s, 2 H), 4.11 (s, 3 H), 4.01 (s, 3 H), 3.99 (s, 3 H), 3.94 (s, 3 H), 3.90 (s, 3 H), 3.70 ($\mathrm{s}, 3 \mathrm{H}$), 3.58 ($\mathrm{s}, 6 \mathrm{H}$), 3.38 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.3,158.5(2 \times), 151.9,151.5$, $149.2,146.3,142.2,140.2,128.9,128.1,125.0,123.9,123.4,118.9$, 112.4, 102.6, $99.8(2 \times), 90.6,61.3,61.1,61.0,60.5,55.9(2 \times), 55.6$, 55.42, 55.38.

HRMS (ESI-TOF): $m / z\left[M+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{9}$: 525.2125; found: 525.2130.

Single-Crystal X-ray Data

Crystals of compound $\mathbf{4 a h} \mathbf{- 1}$ were grown by slow diffusion of EtOAc into a solution of compound $\mathbf{4 a h} \mathbf{- 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group $\mathrm{P}-1, a=10.9208(3) \AA, b=12.8617(4) \AA, c=19.3099(4) \AA, V=$ $2675.59(12) \AA^{3}, Z=4, d_{\text {calcd }}=1.302 \mathrm{~g} / \mathrm{cm}^{3}, F(000)=1112.0,2 \theta$ range $3.18-52^{\circ}, \mathrm{R}$ indices (all data) $\mathrm{R} 1=0.0912, \mathrm{wR} 2=0.1457$.

Triarylmethanes 4ai-at; General Procedure 2

$\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA (3a; $250 \mathrm{mg}, \sim 10 \mathrm{~mol} \%$) was added to a stirred solution of aryl aldehyde $\mathbf{1 c}, \mathbf{1 y}$, or $\mathbf{1 h}(5.0 \mathrm{mmol})$ and oxygenated arene 2a or $\mathbf{2 f}(5.0 \mathrm{mmol})$ in $\operatorname{DMF}(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h . Then, a solution of oxygenated arene $\mathbf{2 j}, \mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}$, or $\mathbf{2 f}(5.0 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added to the mixture. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h . Upon completion, 3a could be placed on the side wall of the reaction vessel with the aid of an external magnet, then 3a was isolated, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and dried to reuse in the next run. Then, the combined DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were concentrated under reduced pressure to afford the crude product. Purification on silica gel (hexanes/EtOAc 50:1 to 10:1) afforded compounds 4ai-at.

1,2,3-Trimethoxy-4-((4-methoxyphenyl)(p-tolyl)methyl)benzene

 (4ai)Prepared according to the general procedure 2 from $\mathbf{1 c}(600 \mathrm{mg}, 5.0$ mmol), $\mathbf{2 f}$ ($840 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 j}(540 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 80% (1513 mg); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3$ H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), $3.54(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.8,152.1,151.6,142.3,141.3$, 136.4, 135.4, 131.1, $130.2(2 \times), 129.2(2 \times), 128.8(2 \times), 124.2,113.5(2$ $\times), 106.6,60.60,60.57,55.8,55.1,48.6,21.0$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{4}$: 379.1909; found: 379.1915.

1-((3,4-Dimethoxyphenyl)(p-tolyl)methyl)-2,3,4-trimethoxybenzene (4aj)

Prepared according to the general procedure 2 from $\mathbf{1 c}(600 \mathrm{mg}, 5.0$ $\mathrm{mmol}), \mathbf{2 f}(840 \mathrm{mg}, 5.0 \mathrm{mmol})$, and $\mathbf{2 a}(690 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 78% (1592 mg); colorless liquid.
${ }^{1}{ }^{1} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=$ $2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (s, 1 H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.52 ($\mathrm{s}, 3$ H), $2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.2,151.6,148.6,147.2,142.2$, $141.2,136.8,135.5,130.9,129.1(2 \times), 128.8(2 \times), 124.1,121.3,112.7$, 110.7, 106.5, 60.6, $55.8(2 \times), 55.7(2 \times), 49.0,20.9$.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{5}$: 409.2015; found: 409.2022.

5-(p-Tolyl(2,3,4-trimethoxyphenyl)methyl)benzo[d][1,3]dioxole

 (4ak)Prepared according to the general procedure 2 from $\mathbf{1 c}$ ($600 \mathrm{mg}, 5.0$ mmol), $\mathbf{2 f}$ ($840 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 b}$ ($610 \mathrm{mg}, 5.0 \mathrm{mmol}$); yield: 76% $(1490 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.56(\mathrm{~m}, 4 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.72$ ($\mathrm{s}, 1 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.3,151.6,147.5,145.7,142.3$, 141.1, 138.3, 135.6, 130.8, 129.1 ($2 \times$), 128.9 ($2 \times$), 124.2, 122.3, 109.9, 107.8, 106.6, 100.8, 60.8, 60.6, 55.9, 49.1, 21.0.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{5}: 393.1702$; found: 393.1710.

1-((3,4-Di-n-butoxyphenyl)(p-tolyl)methyl)-2,3,4-trimethoxybenzene (4al)

Prepared according to general synthetic procedure 2 from $\mathbf{1 c}(600 \mathrm{mg}$, 5.0 mmol), $\mathbf{2 f}$ ($840 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 c}(1111 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 72% (1772 mg); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.53(\mathrm{~m}$, $3 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88$ $(\mathrm{s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 4 \mathrm{H})$, $1.53-1.43(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.1,151.6,148.8,147.4,142.2$, 141.3, 136.9. 135.4, 131.1, 129.1 ($2 \times$), $128.8(2 \times), 124.2,121.6,115.6$, $113.5,106.5,68.9(2 \times), 60.57,60.55,55.8,49.0,31.4,31.3,20.9,19.2$, 19.1, 13.8 (2×).

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{O}_{5}$: 493.2954; found: 493.2960.

4-((3,4-Difluorophenyl)(4-methoxyphenyl)methyl)-1,2-dimethoxybenzene (4am)

Prepared according to the general procedure 2 from $\mathbf{1 y}$ ($710 \mathrm{mg}, 5.0$ mmol), $\mathbf{2 a}$ ($690 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 j}(540 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 76% $(1407 \mathrm{mg})$; colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ H), $6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 3.86$ (s, 3 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.2,150.7(\mathrm{dd}, J=12.1,127.3$ $\mathrm{Hz}), 148.9,148.2$ (dd, $J=10.7,125.1 \mathrm{~Hz}$), 147.7, 141.6 (t, $J=4.6 \mathrm{~Hz}$), $135.9,135.3,130.1(2 \times), 125.0(\mathrm{dd}, J=3.8,6.1 \mathrm{~Hz}), 121.2,118.0(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 113.8(2 \times), 112.5,110.9,55.80,55.76$, 55.2, 54.6.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{O}_{3}$: 371.1459; found: 371.1468.

5-((3,4-Difluorophenyl)(3,4-dimethoxyphenyl)methyl)benzo[d][1,3]dioxole (4an)

Prepared according to the general procedure 2 from $\mathbf{1 y}$ ($710 \mathrm{mg}, 5.0$ $\mathrm{mmol}), \mathbf{2 a}(690 \mathrm{mg}, 5.0 \mathrm{mmol})$, and $\mathbf{2 b}(610 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 73% (1402 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.06$ (dt, $J=8.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.90(\mathrm{dt}$, $J=2.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.53(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 2$ H), 5.36 ($\mathrm{s}, 1 \mathrm{H}$), 3.86 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.7(\mathrm{dd}, J=12.9,122.8 \mathrm{~Hz}$), $148.9,148.2$ (dd, $J=12.9,122.0 \mathrm{~Hz}), 147.8,146.2,141.3(\mathrm{t}, J=3.8 \mathrm{~Hz})$, 137.1, 135.6, $125.0(\mathrm{t}, J=3.0 \mathrm{~Hz}), 124.9,122.2,121.2,118.0(\mathrm{~d}, J=17.5$ $\mathrm{Hz}), 116.8(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 112.5,111.0,109.6,108.1,101.0,55.8(2 \times)$, 55.1.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{4}$: 385.1252; found: 385.1247.

1,2-Di-n-butoxy-4-((3,4-difluorophenyl)(3,4-dimethoxyphenyl)methyl)benzene (4ao)

Prepared according to the general procedure 2 from $\mathbf{1 y}(710 \mathrm{mg}, 5.0$ $\mathrm{mmol}), \mathbf{2 a}(690 \mathrm{mg}, 5.0 \mathrm{mmol})$, and $\mathbf{2 c}(1111 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 70% (1695 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H})$, $6.85-6.78$ (m, 3 H), 6.64 (br s, 2 H), 6.59-6.54 (m, 2 H), 5.37 ($\mathrm{s}, 1 \mathrm{H}$), $3.98(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (s, 3 $\mathrm{H}), 1.83-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.6(\mathrm{dd}, J=12.2,126.6 \mathrm{~Hz}$), $148.9,148.8,148.1(\mathrm{dd}, J=12.2,125.9 \mathrm{~Hz}), 147.9,147.6,141.5(\mathrm{t}, J=$ $4.6 \mathrm{~Hz}), 135.8,135.7,125.0(\mathrm{dd}, J=3.8,6.1 \mathrm{~Hz}), 121.4,121.2,118.0$ (d, $J=17.4 \mathrm{~Hz}), 116.7(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 115.3,113.5,112.5,110.9,68.9$, 68.8, 55.74, 55.71, 54.9, 31.3, 31.2, 19.2, 19.1, 13.8 (2×).

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{O}_{4}: 485.2504$; found: 485.2511.

1-((3,4-Difluorophenyl)(3,4-dimethoxyphenyl)methyl)-2,3,4-trimethoxybenzene (4ap)

Prepared according to the general procedure 2 from $\mathbf{1 y}(710 \mathrm{mg}, 5.0$ $\mathrm{mmol}), \mathbf{2 a}$ ($690 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 f}(840 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 70% (1506 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.05$ (dt, $J=8.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.89 (dt, $J=2.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 3.862(\mathrm{~s}, 3 \mathrm{H}), 3.856(\mathrm{~s}, 3 \mathrm{H}), 3.84$ ($\mathrm{s}, 3 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 3.54 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.6,151.5,150.7(\mathrm{dd}, J=12.2$, $131.9 \mathrm{~Hz}), 148.9,148.2$ (dd, $J=12.8,128.8 \mathrm{~Hz}), 147.6,142.3,141.5(\mathrm{t}$, $J=3.8 \mathrm{~Hz}), 135.7,129.8,125.01(\mathrm{t}, J=3.8 \mathrm{~Hz}), 123.9,121.2,118.0(\mathrm{~d}$, $J=16.7 \mathrm{~Hz}), 116.7(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 112.6,110.9,106.7,60.64,60.63$, 55.9, 55.8 (2×), 48.7.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{O}_{5}$: 431.1670; found: 431.1675.

2-((3,4-Dimethoxyphenyl)(4-methoxyphenyl)methyl)naphthalene (4aq)

Prepared according to the general procedure 2 from $\mathbf{1 h}(780 \mathrm{mg}, 5.0$ $\mathrm{mmol}), \mathbf{2 a}$ ($690 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 j}$ ($540 \mathrm{mg}, 5.0 \mathrm{mmol}$); yield: 76% (1460 mg); colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1$ H), 7.74-7.72 (m, 1 H), 7.48 (s, 1 H), 7.47-7.43 (m, 2 H), 7.32 (dd, J = $2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1$ H), 5.63 (s, 1 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.77 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.0,148.8,147.5,142.1,136.6$, 136.0, 133.4, 132.1, $130.4(2 \times), 128.0,127.8,127.7,127.5(2 \times), 125.9$, $125.5,121.5,113.7(2 \times), 112.8,110.9,55.81,55.77,55.6,55.2$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{3}: 385.1804$; found: 385.1812.

2-((3,4-Dimethoxyphenyl)(2,3,4-trimethoxyphenyl)methyl)naphthalene (4ar)

Prepared according to the general procedure 2 from $\mathbf{1 h}$ ($780 \mathrm{mg}, 5.0$ $\mathrm{mmol})$, $\mathbf{2 a}(690 \mathrm{mg}, 5.0 \mathrm{mmol})$, and $\mathbf{2 f}(840 \mathrm{mg}, 5.0 \mathrm{mmol})$; yield: 80% (1777 mg); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1$ H), 7.73-7.70 (m, 1 H), 7.44-7.42 (m, 3 H), 7.32 (dd, $J=1.6,8.4 \mathrm{~Hz}, 1$ H), $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=2.0,8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.58 (s, 2 H), 5.96 (s, 1 H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.85 ($\mathrm{s}, 3$ H), 3.77 (s, 3 H), 3.53 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.4,151.7,148.7,147.4,142.3$, 142.0, 136.4, 133.3, 132.1, 130.5, 128.2, 127.8, 127.7, 127.5, 127.4, $125.8,125.4,124.4,121.5,112.9,110.8,106.6,60.7,60.6,55.84,55.79$ ($2 \times$), 49.5.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{5}$: 445.2015; found: 445.2022.

5-((3,4-Dimethoxyphenyl)(naphthalen-2-yl)methyl)benzo[d][1,3]dioxole (4as)

Prepared according to the general procedure 2 from $\mathbf{1 h}(780 \mathrm{mg}, 5.0$ mmol), $\mathbf{2 a}$ ($690 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathbf{2 b}$ ($610 \mathrm{mg}, 5.0 \mathrm{mmol}$); yield: 78% (1553 mg); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1$ H), 7.75-7.72 (m, 1 H), 7.48 (br s, 1 H), 7.46-7.43 (m, 2 H), 7.31 (dd, $J=$ $1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.73 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 3.88$ (s, 3 H), 3.77 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.8,147.7,147.6,146.0,141.8$, 137.9, 136.3, 133.3, 132.1, 127.9, 127.84, 127.81, 127.5 ($2 \times$), 126.0, $125.6,122.5,121.5,112.8,110.9,110.0,108.0,100.9,56.1,55.84$, 55.81.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}$: 399.1596; found: 399.1603.

1,4-Bis(bis(3,4-dimethoxyphenyl)methyl)benzene (4at)

Prepared according to the general procedure 2 from $\mathbf{1 u}$ ($670 \mathrm{mg}, 5.0$ mmol), 2a ($2761 \mathrm{mg}, 20.0 \mathrm{mmol}$); yield: 58% (1886 mg); white solid; $\mathrm{mp} 82-84{ }^{\circ} \mathrm{C}$ (recrystallized from hexanes and EtOAc).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.04(\mathrm{~s}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$, 6.66 (d, $J=2.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.60(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 3.85$ ($\mathrm{s}, 12 \mathrm{H}$), 3.76 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.7(4 \times), 147.4(4 \times), 142.2$ $(2 \times), 136.7(4 \times), 129.1(4 \times), 121.3(4 \times), 112.7(4 \times), 110.8(4 \times), 55.8$ $(4 \times), 55.7(4 \times), 55.5(2 \times)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{O}_{8}$: 651.2958; found: 651.2966.

11-(3,4-Dimethoxyphenyl)-8,9-dimethoxy-6-methyl-11H-dibenzo[b,e]azepine (5)

$\mathrm{Pd} / \mathrm{C}(10 \%, 30 \mathrm{mg})$ was added to a solution of $\mathbf{4 k}(409 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{EtOAc}(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C} . \mathrm{H}_{2}$ gas was installed to the reaction mixture at $25^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h . The mixture was filtered and the solvent was concentrated to afford the crude product. Without further purification, $\mathrm{Et}_{3} \mathrm{~N}(223 \mathrm{mg}, 2.2 \mathrm{mmol})$ was added to a stirred solution of the resulting amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . $\mathrm{AcCl}(314 \mathrm{mg}, 4.0$ mmol) was added to the mixture at $25^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 10 h . The residue was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, filtered and evaporated to afford the crude product under reduced pressure. Without further purification, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(280 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to a stirred solution of the resulting amide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 h . The residue was diluted with sat. aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, filtered and evaporated to afford the crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc 10:1 to 1:1) afforded compound 5; yield: 40\% (161 mg); colorless liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.30(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.26$ (br s, 1 H), 7.08 (br s, 1 H), 6.59 (s, 1 H), 6.06 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$), 5.31 (s, 1 H), 4.04 (s, 3 H), 3.98 (s, 3 H), 3.75 (s, 3 H), 3.58 (s, 3 H), 3.02 (s, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,156.1,148.7,148.4,148.3$, 142.0, 137.2, 133.6, 131.1, 130.8, 129.5, 128.6, 125.7, 120.4, 119.0, 113.1, 112.2, 110.8, 110.2, 57.1, 56.8, 56.0, 55.7, 54.2, 24.5.

HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{4}$: 404.1862; found: 404.1854.

Large-Scale Synthesis of Compound 4a

Recycled $\mathrm{NiFe}_{2} \mathrm{O}_{4} @ \mathrm{SiO}_{2}$-PPA (3a; $2.0 \mathrm{~g}, \sim 10 \mathrm{~mol} \%$) was added to a stirred solution of benzaldehyde ($\mathbf{1 a} ; 4.24 \mathrm{~g}, 40 \mathrm{mmol}$) and veratrole (2a; $11.04 \mathrm{~g}, 80 \mathrm{mmol})$ in $\mathrm{DMF}(8 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h . Upon completion, 3 a could be placed on the side wall of the reaction vessel with the aid of an external magnet, then 3a was isolated, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and dried to reuse in the next run. Then, the combined DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were concentrated to afford the crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc 50:1 to 10:1) afforded compound 4a; yield: 11.07 g (76%).

Conflict of Interest

The authors declare no conflict of interest.

Funding Information

The authors would like to thank the Ministry of Science and Technology of the Republic of China (Taiwan) for the financial support (MOST 109-2113-M-037-014-MY3).

Supporting Information

Scanned photocopies of NMR spectral data for all compounds and Xray analysis data of $\mathbf{4 e}$ and $\mathbf{4 a h} \mathbf{- 1}$. Supporting information for this article is available online at https://doi.org/10.1055/a-1863-3443.

References

(1) Duxbury, D. F. Chem. Rev. 1993, 93, 381.
(2) Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32, 170.
(3) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731.
(4) Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317.
(5) Nambo, M.; Crudden, C. M. ACS Catal. 2015, 5, 4734.
(6) (a) Kshatriya, R.; Jejurkar, V. P.; Saha, S. Eur. J. Org. Chem. 2019, 3818. (b) Liu, X.; Wu, X.; Zhang, L.; Lin, X.; Huang, D. Synthesis 2020, 52, 2311. (c) Irfana, J. C. P. A.; Mercy, A. H.; Ravindra, S.; Kataria, R.; Nandi, G. C. J. Org. Chem. 2020, 85, 3000.
(7) Kraus, G. A.; Jeon, I.; Nilsen-Hamilton, M. A.; Awad, M.; Banerjee, J.; Parvin, B. Molecules 2008, 13, 986.
(8) Wilsdorf, M.; Leichnitz, D.; Reissig, H.-U. Org. Lett. 2013, 15, 2494.
(9) Li, H.; Yang, J.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 6797.
(10) Periasamy, M.; Jayakumar, K. N.; Bharathi, P. J. Org. Chem. 2000, 65, 3548.
(11) Rodrigues, S. M. M.; Previdi, D.; Baviera, G. S.; Matias, A. A.; Donate, P. M. Synthesis 2019, 51, 4498.
(12) Bardajee, G. R. Beilstein J. Org. Chem. 2011, 7, 135.
(13) Wang, X.; Wang, Y.; Du, D. M.; Xu, J. J. Mol. Catal. A: Chem. 2006, 255, 31.
(14) (a) Nair, V.; Abhilash, K. G.; Vidya, N. Org. Lett. 2005, 7, 5857. (b) Nair, V.; Vidya, N.; Abhilash, K. G. Synthesis 2006, 3647.
(15) Kothandapani, J.; Ganesan, A.; Vairaprakash, P.; Ganesan, S. S. Tetrahedron Lett. 2015, 56, 2238.
(16) Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72,3100.
(17) Reddy, C. S.; Nagaraj, A.; Srinivas, A.; Reddy, G. P. Indian J. Chem. 2009, 48B, 248.
(18) An, L. T.; Ding, F. Q.; Zou, J. P. Dyes Pigments 2008, 77, 478.
(19) Singh, K.; Sharma, S.; Sharma, A. J. Mol. Catal. A: Chem. 2011, 347, 34.
(20) Prakash, G. K. S.; Fogassy, G.; Olah, G. A. Catal. Lett. 2010, 138, 155.
(21) Bachhav, H. M.; Takale, B. S.; Telvekar, V. N. Synth. Commun. 2013, 43, 1909.
(22) Jaratjaroonphong, J.; Sathalalai, S.; Techasauvapak, P.; Reutrakul, V. Tetrahedron Lett. 2009, 50, 6012.
(23) Shanmuga, P.; Varma, L. Indian J. Chem. Sect. B 2001, 40B, 1258.
(24) Kang, L. Q.; Gao, H.; Cai, Y. Q. Monatsh. Chem. 2018, 149, 57.
(25) Pasha, M. A.; Nagashree, S. Int. J. Res. Chem. Environ. 2013, 3, 54.
(26) Lim, C. W.; Lee, I. S. Nano Today 2010, 5, 412.
(27) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036.
(28) Li, S.; Lin, M. M.; Kim, H. H.; Topark, M. S.; Kim, D. K.; Muhammed, M. Nano Rev. 2010, 1, 4883.
(29) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem. Int. Ed. 2005, 44, 7852.
(30) Yamada, M.; Arisawa, M. Tetrahedron Lett. 2020, 61, 151422.
(31) Lin, J.-S.; Li, T.-T.; Liu, J.-R.; Jiao, G.-Y.; Gu, Q.-S.; Cheng, J.-T.; Guo, Y.-L.; Hong, X.; Liu, X.-Y.J. Am. Chem. Soc. 2019, 14, 1074.
(32) Yue, C.; Na, F.; Fang, X.; Cao, Y.; Antilla, J. C. Angew. Chem. Int. Ed. 2018, 57, 11004.
(33) Wong, Y. F.; Wang, Z.; Sun, J. Org. Biomol. Chem. 2016, 14, 5751.
(34) Saha, S.; Alamsetti, S. K.; Schneider, C. Chem. Commun. 2015, 51, 1461.
(35) Zhuo, M.-H.; Jiang, Y.-J.; Fan, Y.-S.; Gao, Y.; Liu, S.; Zhang, S. Org. Lett. 2014, 16, 1096.
(36) Zhang, Z.; Wang, H.; Qiu, N.; Kong, Y.; Zeng, W.; Zhang, Y.; Zhao, J. J. Org. Chem. 2018, 83, 8710.
(37) Zhang, J.; Bellomo, A.; Creamer, A. D.; Dreher, S. D.; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 13765.
(38) (a) Eshghi, H.; Khojastehnezhad, A.; Moeinpour, F.; Bakavoli, M.; Zeinabi, N.; Allameh, S. Res. Chem. Intermed. 2015, 41, 7915. (b) Chaudhuri, A.; Mandal, M.; Mandal, K. J. Alloys Compd. 2009, 487, 698.
(39) Khojastehnezhad, A.; Moeinpour, F.; Javid, A. Polycycl. Aromat. Comp. 2019, 39, 404.
(40) Moeinpour, F.; Khojastehnezhad, A. Arabian J. Chem. 2017, 10, S3468.
(41) Vajar, S.; Mokhtary, M. Polycycl. Aromat. Comp. 2019, 39, 111.
(42) Vekariya, R. H.; Prajapati, N. P.; Patel, H. D. Synth. Commun. 2016, 46, 197.
(43) CCDC 1981539 ($\mathbf{4 e}$) and 1981540 (4ah-1) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
(44) Li, P.; Huang, Y.; Hu, X.; Dong, X.-Q.; Zhang, X. Org. Lett. 2017, 19, 3855.
(45) Balakrishna, B.; Bauzá, A.; Frontera, A.; Vidal-Ferran, A. Chem. Eur. J. 2016, 22, 10607.
(46) Fischer-Cornelssen, K. A. Arzneimittelforschung 1984, 34, 125.
(47) Woggon, B.; Angst, J.; Bartels, M.; Heinrich, K.; Hippius, H.; Koukkou, M.; Krebs, E.; Kufferle, B.; Muller-Oerlinghausen, B.; Poldinger, W. Neuropsychobiology 1984, 11, 116.

