Rescuing the impacted endoscopic suturing device during endoscopic sleeve gastroplasty

A 57-year-old woman underwent endoscopic sleeve gastroplasty using an endoscopic suturing device attached to a single-channel adult gastroscope. During the second bite, both the needle driver opening function and anchor exchange mechanism failed. This resulted in impaction of the device in the gastric wall and a “red-out” that obscured the visual field. An ultra-slim gastroscope was inserted transorally, enabling visualization of the impacted device (▶Fig. 1, ▶Video 1). A needle knife was passed through the channel port of the endoscopic suturing system and used to resect through the entrapped gastric tissue. Mini-forceps inserted through the ultra-slim gastroscope were used by a second endoscopist to manipulate the needle-knife catheter to extend the incision laterally and down to the level of the needle driver, thereby releasing the impacted device from the gastric wall (▶Fig. 2).

Ex-vivo examination revealed that the suture needle had become embedded between the anchor exchange catheter and the channel of the endoscopic suturing device (▶Fig. 3). This caused a misalignment between the needle driver and the anchor exchange catheter.
and anchor exchange. Although misalignment occurs in 8.4% of cases [2], it can be salvaged by retracting the anchor exchange a few centimeters before re-engaging the needle driver. In our case, the lodged suture needle created a fixed misalignment that could not be rectified. We show that a needle knife can be used safely to free an impacted device under direct endoscopic visualization, preventing the need for emergency surgical intervention.

Competing interests

The authors declare that they have no conflict of interest.

References


Corresponding author

Alexander Huelsen, MD
Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, 199 Ipswich Rd., Woolloongabba QLD 4102, Australia
alexander.huelsenkatz@health.qld.gov.au

Bibliography

Endoscopy
DOI 10.1055/a-1858-4499
ISSN 0013-726X
published online 2022
© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany