Synlett 2022; 33(13): 1266-1272
DOI: 10.1055/a-1827-6915
letter

Divergent Thio/Selenolactonization of Styrene-Type Carboxylic Acids and Amides: Synthesis of Chalcogenated Isobenzofuran-1 (3H)-ones and Isochroman-1-ones

Kommuru Goutham
a   State Key Laboratory of Microbial Technology, Shandong University, Qingdao City, Shandong Province, 266237, P. R. of China
,
Jingran Zhang
b   Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
,
Yaxin Ouyang
b   Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
,
Yunfei Du
b   Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
,
Kang Zhao
a   State Key Laboratory of Microbial Technology, Shandong University, Qingdao City, Shandong Province, 266237, P. R. of China
› Author Affiliations
K.Z. acknowledges the National Key Research and Development Program of China (2019YFA0905104), and Y.D. acknowledges the National Natural Science Foundation of China (#22071175) for financial support.


Abstract

A divergent synthesis of isobenzofuran-1(3H)-one and 3,4-dihydroisochroman-1-one derivatives has been realized through the reaction of o-alkenyl benzoic acids/amides with PhICl2 and diphenyl disulfides/diselenides. Depending on the substitution type of the o-alkenyl benzoic acid or amide, this metal-free intramolecular oxychalcogenation approach regioselectively affords isobenzofuran-1(3H)-ones or 3,4-dihydroisochroman-1-ones through 5-exo-trig or 6-endo-trig cyclization processes, respectively.

Supporting Information



Publication History

Received: 12 January 2022

Accepted after revision: 18 April 2022

Accepted Manuscript online:
18 April 2022

Article published online:
20 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Inubushi Y, Tsuda Y, Konita T, Matsumoto S. Chem. Pharm. Bull. 1964; 12: 749
    • 1b Devon TK, Scott AI. Handbook of Naturally Occurring Compounds, Vol. 1. Academic Press; New York: 1975
    • 1c Jung M, Ham J, Song J. Org. Lett. 2002; 4: 2763
    • 1d Arnone A, Assante G, Nasini G, Strada S, Vercesi A. J. Nat. Prod. 2002; 65: 48
    • 1e Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC. W, Chau RM. W. Phytochemistry 2002; 60: 179
    • 1f Yoganathan K, Rossant C, Ng S, Huang Y, Butler MS, Buss AD. J. Nat. Prod. 2003; 66: 1116
    • 1g Knepper K, Ziegert RE, Bräse S. Tetrahedron 2004; 60: 8591
    • 1h Lin G, Chan SS. K, Chung HS, Li SL. Chemistry and Biological Action of Natural Occurring Phthalides, Part L, Vol. 32. Elsevier; Amsterdam: 2005: 611
    • 1i Seitz M, Reiser O. Curr. Opin. Chem. Biol. 2005; 9: 285
    • 1j Janecki T, Błaszczyk E, Studzian K, Janecka A, Krajewska U, Różalski M. J. Med. Chem. 2005; 48: 3516
    • 1k Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
    • 1l Chou T.-H, Chen I.-S, Hwang T.-L, Wang T.-C, Lee T.-H, Cheng L.-Y, Chang Y.-C, Cho J.-Y, Chen J.-J. J. Nat. Prod. 2008; 71: 1692
    • 1m Logrado LP. L, Santos CO, Romeiro LA. S, Costa AM, Ferreira JR. O, Cavalcanti BC, de Moraes OM, Costa-Lotufo LV, Pessoa C, dos Santos ML. Eur. J. Med. Chem. 2010; 45: 3480
    • 1n Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
    • 1o Rida PC. G, LiVecche D, Ogden A, Zhou J, Aneja R. Med. Res. Rev. 2015; 35: 1072
    • 1p Qin X.-D, Dong Z.-J, Liu JK. Helv. Chim Acta 2006; 89: 127
    • 1q Rossignol J.-F, Cavier R. DE 2438037, 1975
    • 2a Nozawa K, Yamada M, Tsuda Y, Kawai K, Nakajima S. Chem. Pharm. Bull. 1981; 29: 2689
    • 2b Sato H, Konoma K, Sakamura S. Agric. Biol. Chem. 1981; 45: 1675
    • 2c Furuta T, Fukuyama Y, Asakawa Y. Phytochemistry 1986; 25: 517
    • 2d Ohta S, Kamata Y, Inagaki T, Masuda Y, Yamamoto S, Yamashita M, Kawasaki I. Chem. Pharm. Bull. 1993; 41: 1188
    • 2e Yoshikawa M, Harada E, Naitoh Y, Inoue K, Matsuda H, Shimoda H, Yamahara J, Murakami N. Chem. Pharm. Bull. 1994; 42: 2225
    • 2f Whyte AC, Gloer JB, Scott JA, Malloch D. J. Nat. Prod. 1996; 59: 765
    • 2g Matsuda H, Shimoda H, Yamahara J, Yoshikawa M. Bioorg. Med. Chem. Lett. 1998; 8: 215
    • 2h Matsuda H, Shimoda H, Yoshikawa M. Bioorg. Med. Chem. 1999; 7: 1445
    • 2i Larsen TO, Breinholt J. J. Nat. Prod. 1999; 62: 1182
    • 2j Lee JH, Park YJ, Kim HS, Hong YS, Kim KW, Lee JJ. J. Antibiot. 2001; 54: 463
    • 2k Dumontet V, Hung NV, Adeline M.-T, Riche C, Chiaroni A, Sévenet T, Guéritte F. J. Nat. Prod. 2004; 67: 858
    • 2l Endringer DC, Guimarães KG, Kondratyuk TP, Pezzuto JM, Braga FC. J. Nat. Prod. 2008; 71: 1082
    • 2m Egan BA, Paradowski M, Thomas LH, Marquez R. Org. Lett. 2011; 13: 2086
    • 2n Chen W.-Z, Fan L.-L, Xiao H.-T, Zhou Y, Xiao W, Wang J.-T, Tang L. Chin. Chem. Lett. 2014; 25: 749
    • 2o Kim E, Shin JH, Seok PR, Kim MR, Yoo SH, Kim Y. J. Funct. Foods 2018; 42: 1
    • 3a Li Y, Zhang J, Li D, Chen Y. Org. Lett. 2018; 20: 3296
    • 3b Song L, Zhu L, Zhang Z, Ye J.-H, Yan S.-S, Han J.-L, Yin Z.-B, Lan Y, Yu D.-G. Org. Lett. 2018; 20: 3776
    • 3c Mahendar L, Satyanarayana G. J. Org. Chem. 2015; 80: 7089
    • 3d Mahendar L, Satyanarayana G. J. Org. Chem. 2016; 81: 7685
    • 3e Nguyen TV. Q, Rodríguez-Santamaría JA, Yoo W.-J, Kobayashi S. Green Chem. 2017; 19: 2501
    • 3f Sperança A, Godoi B, Pinton S, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2011; 76: 6789
    • 3g Li Y, Li G, Ding Q. Eur. J. Org. Chem. 2014; 5017
    • 3h Casnati A, Maggi R, Maestri G, Della Ca N, Motti E. J. Org. Chem. 2017; 82: 8296
    • 3i Ackermann L, Pospech J, Graczyk K, Rauch K. Org. Lett. 2012; 14: 930
    • 3j Pal S, Chatare V, Pal M. Curr. Org. Chem. 2011; 15: 782
    • 3k Habel A, Boland W. Org. Biomol. Chem. 2008; 6: 1601
    • 4a Breder A, Ortgies S. Tetrahedron Lett. 2015; 56: 2843
    • 4b Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 4c Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
    • 4d Li X, Guo Y, Shen Z. J. Org. Chem. 2018; 83: 2818
    • 4e Liu Z, Ni H.-Q, Zeng T, Engle KM. J. Am. Chem. Soc. 2018; 140: 3223
    • 4f Liu X, Liang Y, Ji J, Luo J, Zhao X. J. Am. Chem. Soc. 2018; 140: 4782
    • 4g Tang X, Studer A. Angew. Chem. Int. Ed. 2017; 57: 814
    • 4h Li W, Boon JK, Zhao Y. Chem. Sci. 2018; 9: 600
    • 4i Kong W, Yu C, An H, Song Q. Org. Lett. 2018; 20: 4975
    • 4j Ouyang X.-H, Cheng J, Li J.-H. Chem. Commun. 2018; 54: 8745
    • 4k Yang B, Qiu Y, Bäckvall JE. Acc. Chem. Res. 2018; 51: 1520
    • 5a Schultz DM, Wolfe JP. Synthesis 2012; 44: 351
    • 5b Buarque CD, Pinho VD, Vaz BG, Eberlin MN, da Silva AJ. M, Costa PR. R. J. Organomet. Chem. 2010; 695: 2062
    • 5c Cheng J, Qi X, Li M, Chen P, Liu G. J. Am. Chem. Soc. 2015; 137: 2480
    • 6a Xi H, Deng B, Zong Z, Lu S, Li Z. Org. Lett. 2015; 17: 1180
    • 6b Takeuchi H, Hiyama T, Kamai N, Oya H. J. Chem. Soc., Perkin Trans. 2 1997; 2301
    • 6c Zhu Q, Li DK, Mao TT, Huang JB. Chem. Commun. 2017; 53: 3450
    • 7a Kitson RR. A, Millemaggi A, Taylor RJ. K. Angew. Chem. Int. Ed. 2009; 48: 9426
    • 7b Albrecht A, Albrecht L, Janecki T. Eur. J. Org. Chem. 2011; 2747
  • 9 Gao C, Jiang X, Wang H, Zhao Z, Wang W.-J. J. Drug Metab. Toxicol. 2013; 4: 10159 DOI: 10.4172/2157-7609.1000159.
    • 10a McCue AJ, Anderson JA. Catal. Sci. Technol. 2014; 4: 272
    • 10b Otocka S, Kwiatkowska M, Mandalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
    • 10c Rathore V, Jose C, Kumar S. New J. Chem. 2019; 43: 8852
    • 11a Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A. Angew Chem. Int. Ed. 2003; 42: 3131
    • 11b Seus N, Goldani B, Lenardão EJ, Savegnago L, Paixão MW, Alves D. Eur. J. Org. Chem. 2014; 1059
    • 12a Monleón A, Blay G, Domingo LR, Muñoz MC, Pedro JR. Eur. J. Org. Chem. 2015; 1020
    • 12b Lu LH, Zhou S.-J, Sun M, Chen J.-L, Xia W, Yu X, Xu X, He W.-M. ACS Sustainable Chem. Eng. 2019; 7: 1574
    • 12c Wu C, Xiao H.-J, Wang S.-W, Tang MS, Tang Z.-L, Xia W, Li WF, Cao Z, He W.-M. ACS Sustainable Chem. Eng. 2019; 7: 2169
    • 12d Wu C, Lu L.-H, Peng A.-Z, Jia GK, Peng C, Cao Z, Tang Z, He W.-M, Xu X. Green Chem. 2018; 20: 3683
    • 12e Bao W.-H, Wu C, Wang J.-T, Xia W, Chen P, Tang Z, Xu X, He W.-M. Org. Biomol. Chem. 2018; 16: 8403
    • 12f Lu L.-H, Zhou S.-J, He W.-B, Xia W, Chen P, Yu X, Xu X, He W.-M. Org. Biomol. Chem. 2018; 16: 9064
    • 13a Rayner CM. Organosulfur Chemistry: Synthetic Aspects . Page P. Academic Press; London: 1995. Chap. 3,; 8
    • 13b Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 11: 1649
    • 13c Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 13d Becht JM, Le Drian C. J. Org. Chem. 2011; 76: 6327
    • 13e Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 13f Dunbar KL, Scharf DH, Litomska L, Hertweck C. Chem. Rev. 2017; 117: 5521
    • 13g Casola KK, Gomes MR, Back DF, Zeni G. J. Org. Chem. 2018; 83: 6706
    • 13h Perin G, Alves D, Jacob RG, Barcellos AM, Soares LK, Lenardaõ EJ. ChemistrySelect 2016; 2: 205
    • 14a Kosugi M, Shimizu T, Migita T. Chem. Lett. 1978; 13
    • 14b Lindley J. Tetrahedron 1984; 40: 1433
    • 14c Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 15a Denmark SE, Hartmann E, Kornfilt DJ. P, Wang H. Nat. Chem. 2014; 6: 1056
    • 15b Santi C, Tidei C. In Comprehensive Organic Synthesis II, Vol. 7. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 605
    • 15c De la Mare PB. D, Bolton R. Electrophilic Additions to Unsaturated Systems, 2nd ed. Elsevier; Amsterdam: 1982. Chap. 6 19
    • 16a Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
    • 16b Shigehisa H, Hayashi M, Ohkawa H, Suzuki T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K. J. Am. Chem. Soc. 2016; 138: 10597
    • 16c Ferrand L, Tang Y, Aubert C, Fensterback L, Mouriès-Mansuy V, Petit M, Amatore M. Org. Lett. 2017; 19: 2062
    • 17a Parmar D, Maji MS, Rueping M. Chem. Eur. J. 2014; 20: 83
    • 17b Han X, Dong C, Zhou H.-B. Adv. Synth. Catal. 2014; 356: 1275
    • 17c Nakatsuji H, Sawamura Y, Sakakura A, Ishihara K. Angew. Chem. Int. Ed. 2014; 53: 6974
    • 17d Egami H, Asada J, Sato K, Hashizume D, Kwato Y, Hamashima Y. J. Am. Chem. Soc. 2015; 137: 10132
    • 17e Geary GC, Hope EG, Stuart AM. Angew. Chem. Int. Ed. 2015; 54: 14911
    • 17f Denmark SE, Ryabchuk P, Burk MT, Gilbert BB. J. Org. Chem. 2016; 81: 10411
    • 17g Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
    • 17h Chen T, Yeung Y.-Y. Org. Biomol. Chem. 2016; 14: 4571
    • 17i Griffin JD, Cavanaugh CL, Nicewicz DA. Angew. Chem. Int. Ed. 2017; 56: 2097
    • 17j Nishiyori R, Tsuchihashi A, Mochizuki A, Kaneko K, Yamanaka M, Shirakawa S. Chem. Eur. J. 2018; 24: 16747
    • 17k Okada M, Kaneko K, Yamanakab M, Shirakawa S. Org. Biomol. Chem. 2019; 17: 3747
    • 17l Yuan J, Zeng F, Mai W, Yang L, Xiao Y, Maoa P, Wei D. Org. Biomol. Chem. 2019; 17: 5038
    • 18a Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 18b Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
    • 18c Zhang S, Li L, Zhang J, Zhang J, Xuea M, Xu K. Chem. Sci. 2019; 10: 3181
    • 19a Karila D, Leman L, Dodd RH. Org. Lett. 2011; 13: 5830
    • 19b Hemric BN, Shen K, Wang Q. J. Am. Chem. Soc. 2016; 138: 5813
    • 19c Xie J, Wang Y.-W, Qi L.-W, Zhang B. Org. Lett. 2017; 19: 1148
    • 20a Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
    • 20b Sha W, Ni S, Han J, Pan Y. Org. Lett. 2017; 19: 5900
    • 20c Shikora JM, Um C, Khoder ZM, Chemler SR. Chem. Sci. 2019; 10: 9265
    • 20d Felipe-Blanco D, Gonzalez-Gomez JC. Eur. J. Org. Chem. 2019; 7735
    • 21a Clive DL. J, Russell CG, Chittattu G, Singh A. Tetrahedron 1980; 36: 1399
    • 21b Crich D, Surve B, Sannigrahi M. Heterocycles 2004; 62: 827
    • 21c Denmark SE, Collins WR. Org. Lett. 2007; 9: 3801
    • 21d Shahzad SA, Venin C, Wirth T. Eur. J. Org. Chem. 2010; 3465
    • 21e Zhou E, Han X, Li Y, Guo C, Dong C. Heterocycles 2015; 91: 1628
    • 21f Niu W, Yeung Y.-Y. Org. Lett. 2015; 17: 1660
    • 21g Xu C, Shen Q. Org. Lett. 2015; 17: 4561
    • 21h Guo L.-N, Gu Y.-R, Yang H, Hu J. Org. Biomol. Chem. 2016; 14: 3098
    • 23a Kumamoto H, Onuma S, Tanaka H. J. Org. Chem. 2004; 69: 72
    • 23b Cheng J.-H, Ramesh C, Kao H.-L, Wang Y.-J, Chan C.-C, Lee C.-F. J. Org. Chem. 2012; 77: 10369
    • 23c Yadav JS, Subba Reddy BV, Jain R, Baishya G. Tetrahedron Lett. 2008; 49: 3015
  • 24 Isobenzofuranones 2an and Isochromanones 3ay; General Procedure PhICl2 (1.54 mmol) was added to a solution of PhSSPh (1.1 mmol) in MeCN (20 mL) at rt, and the mixture was stirred in darkness for 15 min to give an orange solution. Substrate 1 (2.2 mmol) was added in one portion to the orange solution, and the mixture was stirred until the starting material was consumed (TLC). The resulting mixture was then extracted with EtOAc (3 × 50 mL) and the combined organic phase was evaporated to remove the solvent. The residue was purified by flash chromatography (silica gel, EtOAc–PE). 3-Phenyl-3-[(phenylsulfanyl)methyl]-2-benzofuran-1(3H)-one (2a) Prepared by following the general procedure and purified by column chromatography (silica gel, 3–4% EtOAc–PE) to give a white solid; yield: 720 mg (97%); mp 76–78 °C. 1H NMR (600 MHz, CDCl3): δ = 7.93–7.90 (m, 1 H), 7.54–7.51 (m, 2 H), 7.50–7.47 (m, 2 H), 7.40–7.30 (m, 4 H), 7.14 (s, 5 H), 3.88 (ABq, J = 14.3 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 169.3, 150.3, 139.1, 135.9, 133.7, 131.2, 129.4, 128.8, 128.7, 127.0, 126.8, 125.6, 125.3, 122.8, 88.6, 46.3. HRMS (ESI): m/z [M + H]+ calcd for C21H17O2S: 333.0944; found: 333.0945. 3-Phenyl-4-(phenylsulfanyl)isochroman-1-one (3a) Prepared by following the general procedure and purified by column chromatography (silica gel, 3–4% EtOAc–PE) to give a colorless solid; yield: 702 mg (96.4%); mp 214–216 °C. 1H NMR (600 MHz, CDCl3): δ = 8.09 (d, J = 7.8 Hz, 1 H), 7.49 (td, J = 7.6, 1.4 Hz, 1 H), 7.40–7.37 (m, 3 H), 7.33–7.26 (m, 4 H), 7.22–7.18 (m, 3 H), 7.10 (d, J = 7.3 Hz, 2 H), 5.75 (d, J = 3.4 Hz, 1 H), 4.69 (d, J = 3.4 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 163.6, 137.7, 137.2, 134.4, 134.0, 132.3, 130.1, 129.3, 128.84, 128.80, 128.5, 128.4, 128.3, 126.1, 125.1, 81.6, 50.7. HRMS (ESI): m/z [M + H]+ calcd for C21H17O2S: 333.0944; found: 333.0948.
    • 25a Zhang Z.-Q, Liu P. Org. Biomol. Chem. 2015; 13: 6690
    • 25b Liu Z.-C, Zhao Q.-Q, Chen J, Tang Q, Chen J.-R, Xiao W.-J. Adv. Synth. Catal. 2018; 360: 2087