A 39-year-old man was diagnosed with an 8-mm neuroendocrine tumor (NET) in the rectum (Fig. 1a). Endoscopic ultrasonography indicated that the lesion was confined to the submucosa. In order to get an en bloc resection, we developed an underwater endoscopic mucosal resection (EMR) technique assisted by an additional working channel (AWC) that we made ourselves. A nasal oxygen tube about 30 cm in length was taped to the outside of the endoscope to become an AWC. The snare could move back and forth and rotate freely through the tube (Video 1). After the snare was placed around the lesion through our self-made AWC, the lesion was grasped underwater with a reopenable clip (http://Fig. 1 b). The clip was pulled back in the water and the snare was tightly grasped and then the tumor was removed by the redeployed clip (http://Fig. 1 c). No residual lesion was observed in the wound, and there was no bleeding or perforation. The fresh specimen was stretched and fixed. The histological appearance of the resected specimen showed a grade 1 NET with negative vertical and horizontal margins.

Video 1 Underwater endoscopic mucosal resection to remove a rectal neuroendocrine tumor with the assistance of a self-made additional working channel.
tended to perform resection with an Endocut Q (effect 3, cut duration 2, cut interval 4) (▶ Fig. 1c). The wound was clean and without bleeding or perforation (▶ Fig. 1d). Finally, the fresh specimen was stretched and fixed on a foam plate with the mucosal surface facing downward (▶ Fig. 1e). Histological examination showed a grade 1 NET with negative vertical and horizontal margins (▶ Fig. 1f).

Edris Wedi et al. reported that a commercially available system called EMR+ was a practical method of overcoming the limitations of classical EMR [1]. We believe that our self-made AWC using a nasal oxygen tube, which is a very easily accessible thing, can achieve the same effect. Combined with the advantages of underwater EMR, this technique can be successfully and inexpensively applied to deal with gastrointestinal NETs, most of which are in the submucosa.

The authors

Chao Deng1, Suhua Wu1, Lin Liao2, Xiaodong Guo1, Jia Li3, Zhechuan Mei1, Song He1
1 Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
2 Department of Pharmacy, Chongqing General Hospital, Chongqing, P. R. China
3 Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China

Corresponding author

Song He, MD
Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400000, P. R. China
hedoctor65@cqmu.edu.cn

Reference

Competing interests

The authors declare that they have no conflict of interest.

Bibliography

Endoscopy
DOI 10.1055/a-1814-4311
ISSN 0013-726X
published online 2022
© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany