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ABSTRACT

Background Recently introduced MRI techniques facilitate

accelerated examinations or increased resolution with the

same duration. Further techniques offer homogeneous image

quality in regions with anatomical transitions. The question

arises whether and how these techniques can be adopted for

routine diagnostic imaging.

Methods Narrative review with an educational focus based

on current literature research and practical experiences of dif-

ferent professions involved (physicians, MRI technologists/

radiographers, physics/biomedical engineering). Different

hardware manufacturers are considered.

Results and Conclusions Compressed sensing and simulta-

neous multi-slice imaging are novel acceleration techniques

with different yet complimentary applications. They do not

suffer from classical signal-to-noise-ratio penalties. Combin-

ing 3 D and acceleration techniques facilitates new broader

examination protocols, particularly for clinical brain imaging.

In further regions of the nervous systems mainly specific

applications appear to benefit from recent technological

improvements.

Key points:
▪ New acceleration techniques allow for faster or higher

resolution examinations.

▪ New brain imaging approaches have evolved, including

more universal examination protocols.

▪ Other regions of the nervous system are dominated by

targeted applications of recently introduced MRI tech-

niques.

Citation Format
▪ Sundermann B, Billebaut B, Bauer J et al. Practical Aspects of

novel MRI Techniques in Neuroradiology: Part 2 – Accelera-

tion Methods and Implications for Individual Regions.

Fortschr Röntgenstr 2022; 194: 1195–1203

ZUSAMMENFASSUNG

Hintergrund Neuere MR-Techniken ermöglichen unter an-

derem, Untersuchungen deutlich zu beschleunigen oder in

gleicher Zeit höher aufgelöste Bilddaten aufzunehmen und

Review
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Übergangsregionen mit homogener Bildqualität zu unter-

suchen. Es stellt sich die Frage nach der breiten Anwendbar-

keit solcher Techniken in der Routinediagnostik.

Methode Narrative Übersichtsarbeit mit Fortbildungs-

schwerpunkt basierend auf aktueller Literaturrecherche und

praktischen Erfahrungen verschiedener Berufsgruppen (ärztli-

ches Personal, MTRA, MR-Physik/Technik) und mit Geräten

unterschiedlicher Hersteller.

Ergebnisse und Schlussfolgerungen Mit Compressed Sen-

sing und simultaner Mehrschicht-Bildgebung stehen neue

Beschleunigungsverfahren zur Verfügung, die sich in ihren

Einsatzmöglichkeiten unterscheiden und ergänzen. Sie wei-

sen keine klassischen Einschränkungen des Signal-Rausch-

Verhältnisses auf. Die Kombination von verbesserten 3D- und

Beschleunigungstechniken ermöglicht insbesondere bei der

Bildgebung des Gehirns neue universelle Untersuchungspro-

tokolle, während in anderen Regionen des Nervensystems

vor allem spezifische Indikation von neuen Methoden profitie-

ren.

Introduction

Newer techniques are currently fundamentally changing imaging
strategies in magnetic resonance imaging (MRI). In this part,
recent acceleration techniques will be presented first, followed
by an outlook on other new techniques and an overview of possi-
ble routine applications in neuroradiology of the techniques
presented in Parts 1 and 2.

Techniques

New Acceleration Techniques

Conventional acceleration techniques such as parallel imaging,
both in image space (e. g., SENSE1) and in k-space (e. g., GRAPPA
and the further developed CAIPIRINHA), are accompanied by a
reduction in signal-to-noise ratio (SNR) inhomogeneously dis-
tributed across the image [1]. Newer techniques allow accelera-
tion without this typical SNR limitation.

Simultaneous Multi-slice Imaging

Technical background and potential advantages

In conventional 2 D sequences, individual slices are excited and
recorded separately. In simultaneous multi-slice (SMS) or multi-
band techniques, special high-frequency pulses are used to excite
several slices simultaneously and then read them out [2]. Parallel
imaging principles are used to separate the signals from the
different slices [2, 3]. Theoretically, acceleration is not accompa-
nied by reduced SNR [2]. Depending on the manufacturer, SMS is
available for echoplanar imaging (EPI) as well as 2 D turbo spin
echo (TSE) [2]. Further reading: [2].

Possible limitations

Even if the SNR is theoretically not significantly negatively affec-
ted by SMS acceleration, the achievable acceleration is limited.
Thus, the TR cannot be reduced indefinitely depending on the
weighting (and thus the measurement time) and this in turn
affects the SNR [4]. In addition, ghosting and so-called slice-
leakage artifacts [2, 5–8] as well as crosstalk [2, 9] can occur
(▶ Fig. 1). The latter can significantly reduce image quality. They
are related to the SMS acceleration factor, the number of slices
and the FOV shift factor [2, 3]. Although the occurrence of slice
crosstalk can be theoretically inferred [2], it is difficult for the
clinical user to predict its appearance.

Practical notes on application

Activating SMS does not automatically cause acceleration. Rather,
it becomes possible for the user to reduce the repetition time (TR)
and thus shorten the measurement time.

Other practical considerations include the choice of receiving
coil, slice orientation, and a suitable acceleration factor. Since slice
separation is based on similar principles to parallel imaging, it is
necessary to have multiple coil elements along the slice stack (in-
creasingly with higher acceleration factor). When recording trans-
verse slices, it should be noted that the number of coil elements is
often relatively small for this direction. For example, with 20-
channel head coils with SMS for transverse slices, acceleration by
a factor of 2 is usually possible, whereas SMS acceleration factors
of 8, used e. g. in scientific applications with 64-channel coils (cf.
[8, 10–12]), are not realistic with current clinical hardware. In the
scientific literature, it is predominantly recommended to achieve
acceleration with SMS alone [12] because additional use of paral-
lel imaging within the slice is less efficient in terms of artefacts
and SNR. However, for clinical coils, it may be useful to combine
an SMS factor of 2 with a low factor of parallel imaging within
the slice [13]. At the same time, coil elements should be activated
generously, even if they only slightly overlap with the scan region.

In our opinion, SMS sequences can contribute to significantly
faster examinations or better image quality when routine proto-
cols are specifically optimized. SMS sequences in routine proto-
cols should be designed to anticipate sufficient slices (as integer
multiples of the acceleration factor) to prevent artefact genera-
tion due to spontaneous increase of the number of slices by users.

1 In some instances trade names are provided in this article for user or-
ientation because there is no uniform non-proprietary name concept for
MR techniques as in pharmacology. In contrast to other abbreviations,
acronyms which primarily have the character of a product or proper
name are not listed here for better readability. Some of these are trade-
marks of the respective manufacturers. The naming also partly reflects
the practical experiences of the authors. In particular, designation is not
intended to give preference to any specific manufacturer and its imple-
mentations, nor to infringe upon any corresponding trademark rights.
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Compressed Sensing

Technical background and potential advantages

An analogy that can be used to better understand the idea of
compressed sensing (CS) is the compression of image data. An
image file can be reduced in size by omitting redundant or less
relevant information without causing a relevant change in the
visual impression [14]. What would it be like if images could be
captured in such a compressed form right from the start and
thus significantly save measurement time? CS approaches this
goal by combining incoherent undersampling with iterative re-
construction of image data [15, 16]. An intermediate step is a
transfer of the data into a sparse representation, usually using a
wavelet transform [15]. In theory, applications that benefit most
from CS are those that are sparse anyway (i. e., contain mostly
black-and-white information) or are easier to convert to such a re-
presentation due to redundancy (e. g., 3 D sequences and dynam-
ic measurements with many phase-encoding steps, the number of
which can be reduced by undersampling). Furthermore, CS can be
combined with conventional parallel imaging as well as noise re-
duction [17]. CS is an umbrella term for a family of these approa-
ches. Evaluations of routine clinical applications suggest that CS is
very unlikely to be inferior to conventional comparator sequences
across different applications at moderate accelerations [14, 18–
24]. Further reading: [25].

Possible limitations

Similar to what is known from iterative reconstructions in compu-
ted tomography, CS can lead to an “artificial” image impression
when noise reduction is high (i. e., especially at high acceleration).
Such images, while low in noise (paradoxical relationship of SNR
and acceleration compared to e. g. conventional parallel imaging),
potentially exhibit reduced detail detectability [26].

CS sequences may exhibit artefact patterns directly related to
undersampling [16, 27]. In addition, artefacts of other causes may
appear altered in CS sequences, making them more difficult to
classify. We also assume that the artefacts differ between the
different implementations. Artefacts to be expected when using
a combination of CS and parallel imaging with SENSE have been
described in detail [27], including a “wax-layer artefact” with

increased inhomogeneities over the image area during motion,
streak artefacts and focally-appearing grainy noise [27]. For
example, in another CS implementation of a 3 D FLAIR, motion
artefacts can lead to cortical signal fluctuations.

In particular, time-of-flight MR angiography (ToF MRA) allows
high acceleration factors to be achieved for exclusive arterial
vascular imaging [19, 21, 22]. In our experience, however, this
can make vessel contours look irregular, thus mimicking potential
caliber variations. Usually, ToF MRA as a high-resolution T1-
weighted sequence can provide additional information outside
the vessels such as detection of wall hematomas [28] as well as
(post-contrast) assessment of thrombosis of the cavernous sinus.
This extra-arterial information from ToF-MRA might be limited
with CS acceleration compared with ToF MRA without CS.

Practical notes on application

In clinical implementations, the user usually has little ability to
influence the individual intertwined components that contribute
to image formation. For example, settings are combined in an
acceleration factor, possibly in conjunction with the possibility to
control the strength of noise reduction. For many applications,
the literature currently does not yet allow any concrete conclu-
sions to be drawn regarding optimal detailed settings, so that
their selection is currently also at the discretion of the respective
user, taking into account diagnostic recommendations and guide-
lines. The accelerated measurement can be used to increase the
spatial resolution or to adjust contrast-related parameters so that
the contrast between pathologically altered and healthy tissue is
increased [15].

Outlook on additional Techniques

Other techniques continue or are increasingly being discussed for
clinical use [29]; however, some in earlier stages of development,
are primarily used for scientific purposes or are reserved for spe-
cial indications. For the sake of clarity, only reference is made to
the relevant literature with regard to advanced imaging tech-
niques for specific rarer indications. These include clinical func-
tional MRI, diffusion imaging for tractography, spectroscopic ima-
ging, and perfusion imaging as relevant, for example, in
preoperative diagnostics for neuronavigation or biopsy planning
[30], special techniques to examine the spinal cord [31], oxygena-
tion mapping [32], and synthetic MRI [33, 34] to generate multi-
ple contrasts from a single measurement. Improvements in image
quality and acceleration are sought through image reconstruction
using artificial intelligence [35]. Finally, MR fingerprinting, which
currently has no widespread clinical use, should be mentioned
here. In this process, specific tissue parameters are assigned to
the relatively “chaotic” recorded temporal signal evolution of a
single measurement using a so-called dictionary. Thus, quantita-
tive parameters can also be determined in addition to standard
images with different weightings [36, 37]. This may potentially
lead to a paradigm shift from single sequences optimized based
on visual criteria to a quantitative examination concept in MRI
focused on diagnostic accuracy.

▶ Fig. 1 2D T2 TSE with simultaneous multi-slice imaging in trans-
verse slice orientation. Contrast settings were chosen to highlight
the artefact. Example of a slice leakage artefact: In this case eye
movement artefacts are additionally visible in a slice well above the
orbits. Such artefacts can alter image contrast in distant slices and
in rare cases mimic lesions; thus, knowledge of this artefact is im-
portant.
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Summary Discussion of Applications
for Regions of the Nervous System

We would like to conclude by summarizing important potential
applications in neuroradiology separately according to typical
examination regions. These are suggestions for using the tech-
niques presented in this two-part article to improve the quality
of neuroradiological examinations or to optimize diagnostic pro-
cedures.

Brain

Near-isotropic 3 D FLAIR sequences with fat suppression and
possibly accelerated with CS have particular potential as a uniform
cornerstone for almost all cerebral examination protocols. In
addition to independence from a specific slice orientation during
the examination, the focus is on high lesion detectability and
spatial precision, which together also lead to higher comparability
between examinations. Multiple sclerosis (MS) stands out as a
typical clinical application field for 3D-FLAIR due to advantages
in lesion detection and monitoring [38–40]. In addition to good
comparability over time, a 3D FLAIR usually eliminates the need
for additional sequences to detect infratentorial lesions [38, 39,
41–43]. The classification of juxtacortical lesions likewise
succeeds more clearly than with 2 D techniques [39], since the
partial volume effects that occur due to the greater slice thickness
and slice gaps in 2D imaging are reduced. In addition, 3D FLAIR
allows follow-up of brain tumors to detect slow changes in
diffusely infiltrating portions even with variable slice angulation
[44, 45]. In epilepsy diagnostics, 3 D FLAIR is established for the
detection of focal cortical dysplasia [46–48], primarily due to
geometric properties [49]. Strength of 3 D FLAIR in cerebral
imaging is additionally the often good detectability of extracranial
lesions as well as the assessability of basal cisterns and venous
sinuses due to low susceptibility to hyperintense flow artefacts.
Examples include good detectability of fresh subarachnoid
hemorrhages [50] (▶ Fig. 2) or certain venous thrombi (see
Part 1).

T2-weighted 3D TSE sequences are suitable for the assessment
of CSF spaces, such as for the assessment of CSF flow in the aque-
duct [51]. Since the sequences are less affected by susceptibility
artefacts, they are also suitable for patients with shunts.

Depending on the manufacturer, 2 D T2 TSE and DWI should
be accelerated by SMS or CS with good image quality, This advan-
tage can be used to arrive at a compromise between speed gain
and improved image quality. SMS is suitable for the acquisition of
DWI data with a smaller slice thickness, for example for the detec-
tion of smaller infarctions (▶ Fig. 3) and lesions in the context of
transient global amnesia or for a compromise between accelera-
tion and smaller slice thickness in 2D T2 TSE. Furthermore, very
short emergency protocols have been published using the accel-
eration procedures mentioned above [52].

T1-weighted 3D gradient echo sequences (e. g. MPRAGE) are
currently favored and helpful when imaging brain tumors [53] to
achieve the required small slice thickness for the detection of

brain metastases [54]. Their robustness has increased to the point
where the benefits can increasingly outweigh drawbacks such as
somewhat limited gadolinium contrast (compared to 2 D SE).
However, further development of T1-weighted 3D TSE sequences
remains to be seen, although in the medium term they can
assume these roles. In general, T1-weighted 3 D sequences are
also suitable for routine applications beyond established indica-
tions such as neurooncology, given increasingly higher resolution
requirements in guidelines, and can thus help simplify protocol
structure.

As an example, a basic protocol for examinations of the brain
with a broad scope using several of the techniques presented
here is presented in Online Table 1.

Cerebral Vessels

ToF MRA can be significantly accelerated with CS for many clinical
questions. Flow sensitivity makes T2-weighted 3D TSE sequences
suitable for extension assessment of vascular lesions, for example,
arteriovenous malformation (▶ Fig. 4a). For the assessment of ar-
terial vessel walls (e. g., vasculitis diagnosis [55–58] (▶ Fig. 4b)),
T1-weighted 3D TSE sequences [59] should be used. It should be
noted that because of the high sensitivity for vessel wall enhance-
ment, physiological hyperintensities (e. g., approximately 1 cm
after dural penetration [59]), as well as enhancement after throm-
bectomy [60] and predominantly eccentric in intracranial arterio-
sclerosis [61] can be observed. In modified form, these sequences

▶ Fig. 2 Unlike a) 2D FLAIR, b) 3D FLAIR does not usually suffer from
flow-related artefacts in the basal cisterns (open arrows). Such arte-
facts typically impede subarachnoid hemorrhage detection by 2D
FLAIR. c) and d) 3D FLAIR in a patient with subarachnoid hemor-
rhage. Hyperintense appearance of blood in the subarachnoid space
(arrows) and in the posterior horns of the lateral ventricles (arrow
tip). Lack of complete signal suppression of the cerebrospinal fluid.
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are also suitable for the detection of dissections [62–66] and
could replace more elaborate protocols with multiple single se-
quences in the future. Furthermore note the often good co-inter-
pretability of large venous vessels in some structural 3 D sequen-
ces (FLAIR and T1/MPRAGE) should be noted.

Skull Base, Head and Neck

Decisive improvements in the image quality of fat-suppressed
sequences could be achieved in this region with increasing use of
Dixon techniques (in combination with various 2D and 3D base
sequences). They are particularly well suited for imaging the
head and neck region with a large field of view (FOV) [67] as well
as the brachial plexus [68] because of their insensitivity to field in-
homogeneities at anatomic transitions. T1-weighted 3 D gradi-
ent-echo sequences with Dixon technique (e. g., VIBE-Dixon) are
suitable for high-resolution imaging of the skull base and orbit
[29] (▶ Fig. 5), whereas, however, because of the higher gadoli-
nium contrast, TSE sequences appear advantageous for the detec-
tion of optic neuritis [69]. Radial fat-suppressed T1-weighted 3D
gradient echo sequences appear equally suitable for routine stud-
ies in these regions due to their robustness to motion artefacts
[70]. Neuroradiologically, they are particularly suitable for ima-
ging the skull base or orbita [71]. As an alternative to the con-
structive interference in steady state technique (CISS), particularly

strongly T2-weighted 3 D TSE sequences in combination with
driven-equilibrium (DRIVE) techniques for imaging the basal cis-
terns with cranial nerves and the inner ear structures have already
been established for some time [72, 73]. However, they can
currently be supplemented by CS to improve measurement time
and/or resolution. Touska et al. recently published a detailed
review of new MR techniques in the head/neck region [74].

Spinal Column

2D TSE sequences continue to be the mainstay of imaging of the
spine, particularly the spinal cord. Of particular interest here are
Dixon techniques, which, depending on their specific settings,
can provide various image data simultaneously with high image
quality, which can be used, for example, just like fat-saturated
and non-fat-saturated images [75–79] (▶ Fig. 6). For T2w (T2
TSE Dixon) in particular, we believe this has proven effective and
can often replace Short Tau Inversion Recovery (STIR) acquisi-
tions, simplifying the overall protocol structure. Recent work
even claims that using the T2 Dixon fat image, a T1-weighted se-
quence can also be omitted in degenerative changes [77, 80]. In
the spinal application of T2 TSE Dixon, optimization with respect
to measurement time, resolution and SNRmay be useful, depend-
ing on the manufacturer and local requirements. When imaging
patients with spondylodesis, metal artefact reduction techniques
for visualization of neuroforamina and spinal canal lend them-
selves to problem solving in individual cases.

For specific issues 3 D techniques can be used complemen-
tarily. In spinal imaging, T2-weighted 3D TSE sequences are suit-
able for visualizing the spinal canal and neuroforamina [81, 82]

▶ Fig. 4 Vascular applications of 3D TSE techniques: a) 3D T2 TSE
sequence in a patient with an arterio-venous malformation. This
technique is particularly useful for assessing the nidus as well as
large and medium-sized feeding and draining vessels owing to the
possibility of multiplanar reconstructions and its strong flow void
susceptibility. Flow voids are enhanced by a relatively low refocus-
ing angle. Such imaging data are also suitable for image fusion with
3D angiography data. b) fat-suppressed 3D T1 TSE sequence (here:
accelerated with compressed sensing, resolution 0.87mm isotropic
at 1.5 T) are utilized for arterial vessel wall imaging. This is made
possible by a strong flow void susceptibility. While short segment
vessel wall enhancement for approximately 1 cm after crossing the
dura is physiological, this example shows longer segment circular
enhancement of the vertebral artery (arrow). This is compatible
with a diagnosis of cerebral vasculitis.

▶ Fig. 3 2D DWI SE-EPI accelerated with simultaneous mult-slice
imaging. This acceleration technique can contribute to relevant
acceleration and thus facilitate higher resolution imaging in clini-
cally realistic times. This example (2.5mm slice thickness at 1.5 T,
acquisition duration around 2 minutes) shows high sensitivity for
small cortical infarcts.

1199Sundermann B et al. Practical Aspects of… Fortschr Röntgenstr 2022; 194: 1195–1203 | © 2022. Thieme. All rights reserved.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



and have also been proposed as a screening sequence for this
purpose [83, 84]. When additionally combined with fat suppres-
sion they can be used for the identification of cerebrospinal fluid
leakage [85]. However, they currently appear inferior to 2D tech-
niques for myelon lesions due to artefacts [86]. Currently, advan-
ces in terms of resolution and artefacts in the area of the spinal
cord remain to be seen. Experience with CS acceleration in spinal
imaging is limited to date, but again suggests potential routine
use [87–89].

Peripheral Nervous System

For targeted examination of a short peripheral nerve segment,
fat-suppressed 2 D TSE sequences are still important to detect
fascicular structure in addition to T2w hyperintensities [90]. In
combination with STIR for fat suppression, 3D TSE sequences are
useful for visualizing the plexus [91–94] and conditionally the
further course of peripheral nerves [90, 95]. Parameters should
thus be optimized to avoid hyperintensity of venous vessels,
which could otherwise be mistaken for neuronal structures. This
can be achieved by using a low refocus angle [59, 68, 96] and
black blood techniques [91, 95]. Metal artefact reduction
techniques, for example, can help visualize the sciatic nerve
adjacent to hip arthroplasty (▶ Fig. 5 in Part 1).

Conclusions

The techniques presented in this two-part review can improve MR
diagnostics in neuroradiology. They open up new possibilities for
standardization or even individualization of examinations as illu-
strated in this part of the article for different regions of the ner-
vous system. The acceleration techniques SMS and CS presented
in this part are examples of such recently-developed methods.
Compared to conventional acceleration methods, they sometimes
exhibit different artefacts. Knowledge of such specific advantages
and disadvantages, the ranges of application as well as pitfalls of

the techniques presented in both parts helps in their successful
application in everyday neuroradiological practice.
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