Synlett 2022; 33(09): 815-821
DOI: 10.1055/a-1796-2255
synpacts

Assembling Chiral Center of Heterocycles by Palladium-Catalyzed Asymmetric Hydrocarbonylation

Chaoren Shen
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. of China
b   Institute of Eco-Chongming, Shanghai 202162, P. R. of China
,
Kaiwu Dong
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. of China
b   Institute of Eco-Chongming, Shanghai 202162, P. R. of China
› Author Affiliations
The authors acknowledge financial support from the Science and Technology Commission of Shanghai Municipality (Grant Number 20ZR1471400), the Shanghai Rising-Star Program (Grant Number 21QA1402800), the National Key Research and Development Program of China (Grant Number 2020YFA0710200), and the Fundamental Research Funds for the Central Universities.


Abstract

The strategy of embedding coordinative functional group into the starting material is frequently employed to enhance reactivity and enantioselectivity in various asymmetric catalytic reactions other than enantioselective hydrocarbonylation. Recent progress in palladium-catalyzed asymmetric hydrocarbonylation with this strategy for the synthesis of chiral heterocycles was highlighted. The merits of the innate coordinative functional group not only enhance the reactivity and boost the multiple selectivity, but also facilitates the synthesis of chiral heterocycles.

1 Introduction

2 Challenges in Pd-Catalyzed Asymmetric Hydrocarbonylation

3 Pd-Catalyzed Asymmetric Hydrocarbonylation for the Synthesis of Chiral Heterocycles

4 Summary and Outlook



Publication History

Received: 21 February 2022

Accepted after revision: 11 March 2022

Accepted Manuscript online:
11 March 2022

Article published online:
20 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vondran J, Furst MR. L, Eastham GR, Seidensticker T, Cole-Hamilton DJ. Chem. Rev. 2021; 121: 6610
    • 1b Fortune KM, Castel C, Robertson CM, Horton PN, Light ME, Coles SJ, Waugh M, Clegg W, Harrington RW, Butler IR. Inorganics 2021; 9: 57
    • 1c Kiss G. Chem. Rev. 2001; 101: 3435
    • 1d Yang J, Liu J, Neumann H, Franke R, Jackstell R, Beller M. Science 2019; 366: 1514
    • 1e Dong K, Sang R, Fang X, Franke R, Spannenberg A, Neumann H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 5267
    • 2a Mecking S. Philos. Trans. R. Soc., A 2020; 378: 20190266
    • 2b Pingen D, Klinkenberg N, Mecking S. ACS Sustainable Chem. Eng. 2018; 6: 11219
    • 2c Goldbach V, Falivene L, Caporaso L, Cavallo L, Mecking S. ACS Catal. 2016; 6: 8229
    • 2d Quinzler D, Mecking S. Angew. Chem. Int. Ed. 2014; 49: 4306
    • 3a Dong K, Ding K. Recent Hydrocarbonylation of Unsaturated Hydrocarbons with Homogeneous Catalyst. Weinheim: Wiley-VCH. In The Chemical Transformations of C1 Compounds, Vol. 2; Ding K., Wu X.-F., Han B., Liu, Z. 2022
    • 3b Folster CP, Harkins RP, Lo S.-Y, Sachs JD, Tonks IA. Trends Chem. 2021; 3. 469
    • 3c Sang R, Hu Y, Razzaq R, Jackstell R, Franke R, Beller M. Org. Chem. Front. 2021; 8: 799
    • 3d Peng J, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
    • 3e Shen C, Wu X.-F. Chem. Eur. J. 2017; 23: 2973
    • 3f Wu X.-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
    • 3g Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
  • 4 Peng J.-B, Liu X.-L, Li L, Wu X.-F. Sci. China: Chem. 2022; 65: 441

    • For examples, see:
    • 5a Cheng S, Luo Y, Yu T, Li J, Gan C, Luo S, Zhu Q. ACS Catal. 2022; 12: 837
    • 5b Xu Z, Shen C, Zhang H, Wang P, Dong K. Org. Chem. Front. 2021; 8: 1163
    • 5c Hu H, Peng Y, Yu T, Cheng S, Luo S, Zhu Q. Org. Lett. 2021; 23: 3636
    • 5d Han A, Tao Y, Reisman SE. Nature 2019; 573: 563
    • 5e Ma K, Martin BS, Yin X, Dai M. Nat. Prod. Rep. 2019; 36: 174

      Recent works on asymmetric hydrocarboxylation of aryl alkenes:
    • 6a Yao Y.-H, Yang H.-Y, Chen M, Wu F, Xu X.-X, Guan Z.-H. J. Am. Chem. Soc. 2021; 143: 85
    • 6b Yao Y.-H, Zou X.-J, Wang Y, Yang H.-Y, Ren Z.-H, Guan Z.-H. Angew. Chem. Int. Ed. 2021; 60: 23117
    • 6c Wang X, Wang B, Yin X, Yu W, Liao Y, Ye J, Wang M, Hu L, Liao J. Angew. Chem. Int. Ed. 2019; 58: 12264
  • 7 Clegg W, Elsegood MR. J, Eastham GR, Tooze RP, Wang XL, Whiston K. Chem. Commun. 1999; 1877
    • 8a Cao P, Zhang X. J. Am. Chem. Soc. 1999; 121: 7708
    • 8b Yu W.-Y, Bensimon C, Alper H. Chem. Eur. J. 1997; 3: 417
    • 8c Dong C, Alper H. J. Org. Chem. 2004; 69: 5011
    • 8d Dong C, Alper H. Tetrahedron: Asymmetry 2004; 15: 35
    • 9a Li J, Wang S, Zou S, Huang H. Commun. Chem. 2019; 2: 14
    • 9b Ji X, Gao B, Zhou X, Liu Z, Huang H. J. Org. Chem. 2018; 83: 10134
    • 9c Gao B, Zhang G, Zhou X, Huang H. Chem. Sci. 2018; 9: 380
  • 10 Fang X, Li H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 9030
    • 11a Dong K, Sang R, Wei Z, Liu J, Spannenberg A, Jiao H, Franke R, Beller M. Chem. Sci. 2018; 9: 2510
    • 11b Dong K, Fang X, Gülak S, Franke R, Spannenberg A, Neumann H, Jackstell R, Beller M. Nat. Commun. 2017; 8: 14117
    • 12a Zhao L, Pudasaini B, Genest A, Nobbs JD, Low CH, Stubbs LP, van Meurs M, Rösch N. ACS Catal. 2017; 7: 7070
    • 12b Nobbs JD, Low CH, Stubbs LP, Wang C, Drent E, van Meurs M. Organometallics 2017; 36: 391
    • 12c Low CH, Nobbs JD, van Meurs M, Stubbs LP, Drent E, Aitipamula S, Pung MH. L. Organometallics 2015; 34: 4281
    • 12d Roesle P, Caporaso L, Schnitte M, Goldbach V, Cavallo L, Mecking S. J. Am. Chem. Soc. 2014; 136: 16871
    • 12e Busch H, Stempfle F, Heß S, Grau E, Mecking S. Green Chem. 2014; 16: 4541
    • 12f Walther G, Knöpke LR, Rabeah J, Checiński MP, Jiao H, Brückner A, Martin A, Köckritz A. J. Catal. 2013; 297: 44
  • 13 Gallarati S, Dingwall P, Fuentes JA, Bühl M, Clarke ML. Organometallics 2020; 39: 4544
    • 14a Imamoto T. Proc. Jpn. Acad., Ser. B 2021; 97: 520
    • 14b Xu G, Senanayake CH, Tang W. Acc. Chem. Res. 2019; 52: 1101
    • 14c Privileged Chiral Ligands and Catalysts 2011
  • 15 Wang H, Dong B, Wang Y, Li J, Shi Y. Org. Lett. 2014; 16: 186
  • 16 Huang Z, Cheng Y, Chen X, Wang H.-F, Du C.-X, Li Y. Chem. Commun. 2018; 54: 3967
    • 17a Church TL, Andersson PG. Coord. Chem. Rev. 2008; 252 513 Representative examples
    • 17b Li M, Zhang J, Zou Y, Zhou F, Zhang Z, Zhang W. Chem. Sci. 2021; 12: 15061
    • 17c Zhang J, Chen T, Wang Y, Zhou F, Zhang Z, Gridnev ID, Zhang W. Nat. Sci. 2021; 1: e10021
    • 17d Vyas VK, Clarkson GJ, Wills M. Angew. Chem. Int. Ed. 2020; 59: 14265
    • 17e Song S, Zhu S.-F, Pu L.-Y, Zhou Q.-L. Angew. Chem. Int. Ed. 2013; 52: 6072
  • 18 Li Z, Yamamoto H. Acc. Chem. Res. 2013; 46: 506
    • 19a Yang K, Song M, Liu H, Ge H. Chem. Sci. 2020; 11: 12616
    • 19b Bag D, Verma PK, Sawant SD. Chem. Asian J. 2020; 15: 3225
    • 19c Newton CG, Wang S.-G, Oliveira CC. Cramer N. Chem. Rev. 2017; 117: 8908
    • 20a Ren X, Wang Z, Shen C, Tian X, Tang L, Ji X, Dong K. Angew. Chem. Int. Ed. 2021; 60: 17693
    • 20b Cheng S, Zhu Q. Chin. J. Org. Chem. 2021; 41: 3751
  • 21 Tian D, Xu R, Zhu J, Huang J, Dong W, Claverie J, Tian D, Xu R, Zhu J, Huang J, Dong W, Claverie J, Tang W. Angew. Chem. Int. Ed. 2021; 60: 6305
  • 22 Cai X, Liang W, Liu M, Li X, Dai M. J. Am. Chem. Soc. 2020; 142: 13677
  • 23 Shi Z, Shen C, Dong K. Chem. Eur. J. 2021; 27: 18039
    • 24a Nielsen DU, Hu X.-M, Daasbjerg K, Skrydstrup T. Nat. Catal. 2018; 1: 244
    • 24b Jensen MT, Rønne MH, Ravn AK, Juhl RW, Nielsen DU, Hu X.-M, Pedersen SU, Daasbjerg K, Skrydstrup T. Nat. Commun. 2017; 8: 489
    • 25a He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2022; 61: e202112835
    • 25b He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620