Acquired von Willebrand Syndrome in Children

Kirstin Sandrock-Lang1 Hannah Glonnegger1 Barbara Zieger1

1Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany

Address for correspondence Barbara Zieger, MD, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany (e-mail: barbara.zieger@uniklinik-freiburg.de).

Abstract

Acquired von Willebrand syndrome (AVWS) is a rare bleeding disorder caused by various underlying diseases or conditions and should be distinguished from the inherited type of von Willebrand disease. AVWS is associated with underlying diseases such as cardiovascular, autoimmune, malignant, proliferative disorders, or with mechanical circulatory support (MCS). AVWS was first reported in 1968 and most case reports describe AVWS in adults. However, AVWS can appear in pediatric patients occasionally as well. Because bleeding complications are rare in everyday life, AVWS may be underdiagnosed in pediatric patients. Therefore, the diagnosis should be suspected in a pediatric patient who is known for one of these underlying diseases or conditions and who presents with an onset of bleeding symptoms, especially before the child will undergo an invasive procedure. Here, we present an overview of the diagnostic analyses regarding AVWS and of the underlying diseases or conditions in which AVWS should be considered. Importantly, the patient’s history should be investigated for bleeding symptoms (mucocutaneous or postoperative bleeding). As no single routine coagulation test can reliably confirm or exclude AVWS, the diagnosis may be challenging. Laboratory investigations should include analysis of von Willebrand factor (VWF):antigen, VWF:collagen-binding capacity, VWF:activity, and VWF multimeric analyses. For treatment, tranexamic acid, 1-desamino-8-D-arginine vasopressin, and VWF-containing concentrate can be used. AVWS disappears after the underlying disease has been successfully treated or the MCS has been explanted.

Keywords
► acquired von Willebrand syndrome
► extracorporeal membrane oxygenation
► congenital heart defects
► bleeding

Introduction

Acquired von Willebrand syndrome (AVWS) is a rare acquired bleeding disorder characterized by clinical symptoms and laboratory findings similar to those seen in inherited von Willebrand disease (VWD). In contrast to AVWS, congenital VWD results from mutations in the von Willebrand factor (VWF) gene.1

Patients with AVWS can present with bleeding symptoms such as epistaxis, gastrointestinal, and surgical hemorrhage. Under conditions of major trauma or surgery, AVWS becomes relevant and can be the reason for extensive bleeding. Life-threatening intracranial bleedings, even though rare, may also occur.2

AVWS comprises hemorrhagic disorders in which the VWF is either qualitatively or quantitatively abnormal. The major finding of AVWS is the loss of high-molecular-weight (HMW) multimers of VWF which can be shear stress induced and ultimately leads to impaired function of VWF (qualitative defect). The loss of HMW multimers of VWF results in diminished capability of VWF to interact with collagen and/or with platelets which is identifiable by decreased values for VWF:collagen-binding capacity (VWF:CB) and/or VWF ristocetin cofactor (VWF:RCo), respectively. Therefore, the ratio of VWF:CB to the VWF:antigen (VWF:CB/VWF:Ag) and the ratio of VWF:RCo to the VWF:antigen (VWF:RCo/VWF:Ag) are decreased.3 The VWF:RCo assay measures the binding of VWF to glycoprotein Ib receptors of fixed platelets. In addition, VWF

received December 20, 2021
accepted after revision March 17, 2022

© 2022. Thieme. All rights reserved. DOI https://doi.org/10.1055/a-1790-6156.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany
ISSN 0720-9355.
activity (VWF:GPIbR) which investigates binding of VWF to recombinant GPIb is also reduced. Therefore, in patients with AVWS, the ratio of VWF activity (VWF:GPIbR) to VWF:antigen (VWF:GPIbR/VWF:Ag) is decreased as well. Diagnostic criteria of AVWS are displayed in (Textbox 1).

Textbox 1

Diagnostic criteria of AVWS

- Multimeric analysis: loss of HMW multimers of VWF
- ↓ VWF:collagen-binding capacity
- ↓ VWF:ristocetin cofactor
- ↓ VWF:activity (VWF:GPIbR)
- ↓ Ratio of VWF:CB/VWF:Ag
- ↓ Ratio of VWF:RCo/VWF:Ag
- ↓ Ratio of VWF:GPIbR/VWF:Ag

Textbox 2

Therapeutic options of children with AVWS

- Tranexamic acid
- Desmopressin
- VWF- containing factor VIII concentrate
- VWF concentrate
- Recombinant factor VIIa

Textbox 3

Causes of AVWS

- Consumption: congenital heart defects, mechanical circulatory support
- Immunological: lymphoproliferative or myeloproliferative disorders, systemic lupus erythematosus, hypothyroidism
- Drug-induced: valproic acid, ciprofloxacin

Textbox 4

Prognosis of AVWS

- AVWS is completely reversible
 - After surgical repair in case of CHD
 - After device explantation in case of MCS
 - After successful treatment of the underlying disease (e. g., CML, SLE)

Methods

A narrative review, including all published data from Medline and PubMed database regarding AVWS in children, was conducted.

AVWS in Children with Congenital Heart Disease

In children with congenital heart defects (CHD), AVWS is mostly associated with septal defects (ventricular septal defects, atrial septal defects, or combined atrioventricular septal defects) and patent ductus arteriosus (PDA). Some patients with AVWS suffer from aortic or pulmonary stenosis (Table 1). In children with CHD, flow dynamics are altered and predispose to areas of stasis, and/or higher shear stress with platelet activation. Shear stress in circulation can also lead to decrease or loss of VWF HMW multimers and thus can lead to AVWS. Most probably, AVWS is relatively common in children with CHD and completely resolves shortly after surgical or interventional repair. Bleeding history of some of the children with CHD show mild bleeding symptoms. Even if clinical symptoms are missing during everyday life, AVWS can be the reason for extensive bleeding under conditions of major trauma or surgery. Cardiac surgery of the newborn and infant with complex congenital CHD is associated with a high rate of intraoperative bleeding complications.

In some children with persistent PDA, deficiency of HMW multimers of VWF has been reported. Following interventional PDA occlusion, the VWF HMW multimers normalized shortly after the intervention in all patients, confirming the acquired nature of the disorder.

In addition, the frequency and relationship of AVWS in children with aortic and pulmonary stenosis were investigated by Binnetoğlu et al. AVWS was found to be associated with stenotic obstructive cardiac diseases. Therefore, laboratory analyses should comprise comprehensive analysis of VWF parameters in these patients besides whole blood count, prothrombin time, and activated partial thromboplastin time.

AVWS in Children with Mechanical Circulatory Support

In critically ill children with advanced heart or respiratory failure, MCS, such as ventricular assist device (VAD) or extracorporeal circulatory life support (ECLS), and extracorporeal membrane oxygenation (ECMO) have extended survival and improved quality of life. However, bleeding
Acquired von Willebrand Syndrome in Children Sandrock-Lang et al. 119

and/or thrombotic complications remain a major cause of morbidity and mortality in children with MCS. Complex interactions between blood components and the foreign surfaces and changes in hemodynamics and rheology may lead to AVWS with life-threatening bleeding episodes rather than thromboembolic events (Table 1). In addition, reduced platelet aggregation and increased platelet activation in children during VAD or ECMO support may contribute to the imbalance of the hemostatic system.11,12

Consistent with data from studies in adult patients, a study cohort of 30 children with MCS (ECLS, n = 13; ECMO, n = 5; and VAD, n = 12) showed that all children developed AVWS which was usually diagnosed during the very early postoperative course.11 Laboratory analyses detected a loss of HMW VWF multimers (Fig. 1), decreased VWF:CB/VWF:Ag ratios, and reduced VWF:CB levels. Therefore, analyzing clinical and biochemical data plays a major role in diagnosing AVWS which may be the main cause of bleeding in these patients. Bleeding complications such as thoracic and mediastinal bleeding (primarily located in the surgical wound area) were observed in all three groups, requiring surgical revision in addition to conservative therapy in some children. AVWS can develop within few hours after implanting VAD or starting ECMO or ECLS support. Interestingly, AVWS in this cohort was always reversible within 3 to 24 hours after device explantation or cessation of ECMO/ECLS support which is consistent with data from studies on adult patients. Interestingly, the patients in this cohort did not show any thromboembolic event after MCS termination, despite upregulation of VWF:Ag. This phenomenon may be due to the decrease of the VWF:CB and the reduced VWF:CB/VWF:Ag ratios.

The severity of bleeding tendency among patients during MCS can vary and a direct association with patients’ ages, bleeding location, and overall outcome cannot always be identified.11 Therefore, comprehensive clinical and biochemical phenotyping is essential to perform a risk-stratification of patients during MCS workup. It has been discussed, whether very low VWF:CB and VWF:activity levels, respectively, and very low VWF:CB/VWF:Ag and VWF:Act/VWF:Ag ratios may hint to a more severe form of AVWS. Interestingly, AVWS seems to be more pronounced in patients with ECLS/ECMO compared with patients on VAD support.11,13 Accordingly, patients on ECLS/ECMO required more red blood cell and platelet transfusions.

The therapy for bleeding in those patients remains difficult. During ECLS/ECMO or VAD support, patients were anticoagulated with unfractionated heparin.11 For long-term therapy, patients with left VAD are switched to low-molecular-weight heparin or phenprocoumon (vitamin K antagonist). In case of life-threatening bleeding, substitution of VWF-containing factor VIII concentrates or VWF concentrates may be considered.

AVWS in Children with Other Underlying Diseases

Lymphoproliferative, Myeloproliferative Disorders, Other Neoplasms, and Autoimmune Diseases

AVWS can be associated with further underlying diseases such as lymphoproliferative disorders, myeloproliferative
Acquired von Willebrand Syndrome in Children

VAD, ventricular assist device; VWF, von Willebrand factor; FVIII, factor VIII; ECLS, extracorporeal life support; VAD, ventricular assist device; VWF, von Willebrand factor; FVIII, factor VIII.

Fig. 1 Sodium dodecyl sulfate (SDS)-agarose gel electrophoresis of von Willebrand factor multimers, visualized by enzyme immunostaining after capillary transfer onto polyvinylidene difluoride membranes. Multimeric analysis was performed by SDS-agarose gel electrophoresis in 1.0% of SDS-agarose gels: (1) Standard Human Plasma (SHP), (2) before VAD, and (3) under VAD support. (B) (1) SHP, (2) before ECLS, and (3) under ECLS support. ECLS, extracorporeal circulatory life support; VAD, ventricular assist device.

disorders, other neoplasms, and autoimmune diseases (Table 2). In rare cases, AVWS is also associated with hypothyroidism, uremia, and certain drugs such as valproic acid and ciprofloxacin. In younger patients, AVWS is also associated with renal tumors, glycogen storage disease type 1a (GSD-1a), or systemic lupus erythematosus (SLE). The pathophysiology of AVWS in children and adolescents is related to the underlying diagnosis.

Some case reports described that children with acute lymphoblastic leukemia or chronic myeloid leukemia (CML) had developed an AVWS-associated bleeding phenotype. At diagnosis of CML, patients may present with elevated platelet counts. High cell counts may result in thrombosis and/or secondarily in bleeding complications. Interestingly, patients with pediatric CML frequently exhibit high platelet counts not resulting in thrombosis because binding of VWF multimers to platelets can result in loss of large VWF multimers ultimately leading to AVWS.

Children with myeloproliferative disorders such as essential thrombocythemia and polycythemia vera can also develop AVWS due to the high platelet counts and changes regarding rheology and shear stress. AVWS in patients with SLE is caused by autoantibodies directed against the circulating VWF/FVIII (factor VIII) complex. Binding of autoantibodies leads to large immune complexes which are rapidly cleared by the reticuloendothelial system causing a deficiency of both VWF and FVIII. AVWS in SLE can be cured by the treatment of the underlying autoimmune disease with corticosteroids or immunosuppression.

AVWS associated with hypothyroidism is rare in children and mostly diagnosed during the peripubertal period in the context of Hashimoto’s thyroiditis. The AVWS associated with hypothyroidism differs from the other forms of AVWS: there is a reduction regarding the synthesis and release of VWF that is not associated with a reduced half-life because of either autoantibodies or secondary structural changes regarding the VWF multimers.

AVWS has been described in some pediatric patients with Wilms’ tumor and with embryonal adenomas of the kidney. There is no evidence of autoantibodies against VWF or adsorption of VWF onto tumor cells. It is being discussed that abnormal vasculature and high blood flow through the tumor vessels could produce conditions of high shear stress with physical disruption of VWF multimers. High levels of hyaluronic acid secreted by some Wilms’ tumors may also contribute to the abnormal VWF parameters. Accordingly, the coagulopathy disappears after successful chemotherapy or resection of the tumor.

Glycogen Storage Disease Type 1a
AVWS can also be associated with GSD-1a, usually presenting with easy bruising and troublesome epistaxis in late infancy or early childhood.

Pulmonary Arterial Hypertension
Recently, a causative relationship between idiopathic pulmonary arterial hypertension and AVWS was hypothesized. Interestingly, VWF multimer distribution patterns seem to be normal in all pediatric patients, while most patients demonstrated low-normal VWF parameters. Lung transplantation led to postsurgical normalization of hemostatic abnormalities.

Epstein–Barr Virus
_bleeding symptoms in children have been also described following Epstein–Barr virus (EBV) infection. However, causative relation of bleeding to prior EBV infection remains uncertain. A 6-year-old girl developed petechiae and bruising 2 weeks after an EBV infection. She had a prolonged bleeding time, reduced values for FVIII activity, VWF:Ag, and VWF:RCo and loss of VWF HMW multimers. AVWS resolved after 2 weeks and did not reoccur.

Anticonvulsive Medication
Patients with epilepsy, treated with valproic acid, may present with a variety of coagulation defects: thrombocytopeenia, platelet dysfunction, hypofibrinogenemia, reduced vitamin K–dependent factors, factor XIII deficiency, and AVWS. The cause of AVWS in patients taking valproic acid is unknown. Therefore, in children taking anticonvulsive drugs and who present with bleeding symptoms, AVWS should be investigated.
<table>
<thead>
<tr>
<th>Cause of AVWS</th>
<th>Pathophysiology</th>
<th>Additional findings/information</th>
<th>Clinical symptoms</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lympho-myeloproliferative disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML</td>
<td>Elevated platelet counts \rightarrow loss of VWF high-molecular-weight multimers</td>
<td>Splenomegaly, pronounced leukocytosis, thrombocytosis</td>
<td>mild bleeding signs, rarely thrombosis</td>
<td>AVWS resolved after successful initiation of CML treatment</td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
<td>bleeding episodes (epistaxis, prolonged menstrual bleeding), visual impairment, palmar and plantar stabbing pain</td>
<td>reduction of the platelet count led to normalization of the VWF ratio</td>
</tr>
<tr>
<td>PV</td>
<td>Loss of VWF high-molecular-weight multimers</td>
<td>Increased risk for bleeding or thrombotic events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>Autoantibodies directed against the circulating VWF/FVIII complex</td>
<td></td>
<td>mucocutaneous bleeding symptoms, prolonged bleeding after dental extraction</td>
<td>AVWS can be cured by treatment of the underlying autoimmune disease with corticosteroids or immunosuppression</td>
</tr>
<tr>
<td>Other diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>Reduced/defective synthesis of VWF</td>
<td>Possibility of bleeding</td>
<td>Rectal bleeding, anemia</td>
<td>Normalization of coagulation parameters after restoration of euthyroidism</td>
</tr>
<tr>
<td>Wilms’ tumor (nephroblastoma)</td>
<td>Unknown</td>
<td>High serum levels of hyaluronic acid</td>
<td>Mild mucocutaneous bleeding symptoms</td>
<td>Abnormalities of coagulation resolved after chemotherapy and extirpation of the neoplasm</td>
</tr>
<tr>
<td>GSD-1a</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPAH</td>
<td>Increased shear stress throughout the pulmonary vasculature</td>
<td>Normal distribution pattern of VWF high-molecular-weight multimers</td>
<td>Mild to moderate bleeding symptoms</td>
<td>Normalization of the hemostatic defects following lung transplantation</td>
</tr>
<tr>
<td>Uremia</td>
<td>Proteolytic degradation of VWF</td>
<td>Increased risk for bleeding and/or thrombotic events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valproic acid</td>
<td>Unknown</td>
<td>No relationship between valproate dosage or duration of therapy and the incidence of AVWS</td>
<td></td>
<td>Spontaneous bleeding unclear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extensive bleeding may occur under conditions of major trauma or surgery</td>
</tr>
</tbody>
</table>

Abbreviations: AVWS, acquired von Willebrand syndrome; CML, chronic myeloid leukemia; ET, essential thrombocythemia; GSD-1a, glycogen storage disease type 1a; IPAH, idiopathic pulmonary arterial hypertension; PV, polycythemia vera; SLE, systemic lupus erythematosus; VWF, von Willebrand factor.
Conclusion

AVWS is a common, but still often unrecognized disorder in pediatric patients with MCS, CHD, or other underlying diseases. The pathophysiology and management of acute bleeding episodes depends on the primary underlying disease. VWF abnormalities in AVWS are a result of increased shear stress followed by proteolysis of VWF in case of MCS or CHD, VWF adsorption to surfaces of transformed cells or platelets, or antibody-mediated clearance as well as functional interference. Clinically, AVWS can aggravate bleeding tendencies in these children, especially if hepatic insufficiency, temporary thrombocytopenia, and severe inflammation occur. Therefore, VWF parameters should be investigated in children with MCS or CHD and in case of nonsurgical bleeding. Since the bleeding event may be triggered by several causes, a score incorporating several parameters (i.e., pronounced hemolysis, infections or reduced ratios of VWF:RCo/VWF:Ag, VWF:GPIbR/VWF:Ag, or VWF:CB/VWF:Ag) may help identify patients with an increased risk for bleeding complications.11

In summary, the diagnosis of AVWS should be suspected, if a pediatric patient presents with an onset of bleeding symptoms and suffers from one of the diseases or conditions mentioned earlier. The cause of the bleeding symptoms should be further investigated especially before the child undergoes an invasive procedure.

Conflict of Interest

The authors declare that they have no conflict of interest.

References