Synthesis 2022; 54(16): 3499-3557
DOI: 10.1055/a-1783-0751
review

Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis

Philipp Klahn
a   Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
b   Department for Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 41296 Göteborg, Sweden
,
Robert Zscherp
a   Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
,
Claire C. Jimidar
a   Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
› Author Affiliations
This work has been carried out within the framework of the SMART BIOTECS alliance between the Technische Universität Braunschweig and the Leibniz Universität Hannover. This initiative is supported by the Niedersächsisches Ministerium für Wissenschaft und Kultur (Ministry of Science and Culture (MWK) of Lower Saxony, Germany). Financially support by the Deutsche Forschungsgemeinschaft (Grant KL3012/2-1) and Fonds der Chemischen Industrie is gratefully acknowledged. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.


In memoriam of Prof. Dr. Dieter Enders

Abstract

Iron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.

1 Introduction

2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs

3 Biosynthesis of Enterobactin, Salmochelins, and Microcins

4 Total Synthesis of Enterobactin and Salmochelins

5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives

6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone

7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone

8 Conclusions



Publication History

Received: 15 January 2022

Accepted after revision: 28 February 2022

Accepted Manuscript online:
28 February 2022

Article published online:
17 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sánchez M, Sabio L, Gálvez N, Capdevila M, Dominguez-Vera JM. IUBMB Life 2017; 69: 382
  • 2 Andreini C, Putignano V, Rosato A, Banci L. Metallomics 2018; 10: 1223
  • 3 Durham B, Millett FS. Iron: Heme Proteins & Electron Transport. In Encyclopedia of Inorganic and Bioinorganic Chemistry [Online]. Wiley & Sons, Posted December 15, 2011; 15.12.2011
  • 4 Sousa JS, D’Imprima E, Vonck J. In Membrane Protein Complexes: Structure and Function . Harris JR, Boekema EJ. Springer Singapore; Singapore: 2018: 167
  • 5 Harel A, Bromberg Y, Falkowski PG, Bhattacharya D. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 7042
  • 6 Poulos TL. Chem. Rev. 2014; 114: 3919
  • 7 Yamanaka T, Okunuti K. In Microbial Iron Metabolism: A Comprehensive Treatise . Neilands JB. Academic Press; New York: 1974: 349-400
  • 8 Yancey RJ, Breeding SA. L, Lankford CE. Infect. Immun. 1979; 24: 174
  • 9 Burris RH, Orme-Johnson WH. In Microbial Iron Metabolism: A Comprehensive Treatise . Neilands JB. Academic Press; New York: 1974: 187-209
  • 10 Atkin CL, Thelander L, Reichard P. J. Biol. Chem. 1973; 248: 7464
  • 11 Payne SM, Neilands IB. Crit. Rev. Microbiol. 1988; 16: 81
  • 12 Davis KA, Hatefi Y. Biochemistry 1971; 10: 2509
  • 13 Schröder I, Johnson E, De Vries S. FEMS Microbiol. Rev. 2003; 27: 427
  • 14 Gkouvatsos K, Papanikolaou G, Pantopoulos K. Biochim. Biophys. Acta, Gen. Subj. 2012; 1820: 188
  • 15 Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Int. J. Mol. Sci. 2017; 18: 1985
  • 16 Harrison PM, Arosio P. Biochim. Biophys. Acta 1996; 1275: 161
  • 17 Zhang J, Chen X, Hong J, Tang A, Liu Y, Xie N, Nie G, Yan X, Liang M. Sci. China Life Sci. 2021; 64: 352
  • 18 Fenton HJ. H. J. Chem. Soc. Trans. 1894; 65: 899
  • 19 Klahn P, Brönstrup M. Nat. Prod. Rep. 2017; 34: 832
  • 20 Ganz T, Nemeth E. Am. J. Physiol.: Gastrointest. Liver Physiol. 2006; 290: 199
  • 21 Gammella E, Buratti P, Cairo G, Recalcati S. Metallomics 2014; 6: 1336
  • 22 Ganz T. Int. J. Hematol. 2018; 107: 7
  • 23 Sukhbaatar N, Weichhart T. Pharmaceuticals 2018; 11: 137
  • 24 Golonka R, Yeoh BS, Vijay-Kumar M. J. Innate Immun. 2019; 11: 249
  • 25 Cassat JE, Skaar EP. Cell Host Microbe 2013; 13: 509
  • 26 Hider RC, Kong X. Nat. Prod. Rep. 2010; 27: 637
  • 27 Saha R, Saha N, Donofrio RS, Bestervelt LL. J. Basic Microbiol. 2013; 53: 303
  • 28 Neilands JB. J. Biol. Chem. 1995; 270: 26723
  • 29 Klebba PE, Newton SM. C, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Chem. Rev. 2021; 121: 5193
  • 30 Raymond KN, Dertz EA, Kim SS. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 3584
  • 31 Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD. BioMetals 2004; 17: 471
  • 32 Klebba PE. Front. Biosci. 2003; 8: 1422
  • 33 Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, Voss JJ. D, Schembri MA. Infect. Immun. 2012; 80: 333
  • 34 Jalal MA. F, van der Helm D. FEBS Lett. 1989; 243: 366
  • 35 Rabsch W, Voigt W, Reissbrodt R, Tsolis RM, Bäumler AJ. J. Bacteriol. 1999; 181: 3610
  • 36 Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, Deisenhofer J. Nat. Struct. Biol. 1999; 6: 56
  • 37 Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. Infect. Immun. 2002; 70: 7156
  • 38 Braun V, Braun M. FEBS Lett. 2002; 529: 78
  • 39 Raymond KN, Allred BE, Sia AK. Acc. Chem. Res. 2015; 48: 2496
  • 40 Johnstone TC, Nolan EM. Dalton Trans. 2015; 44: 6320
  • 41 Holden VI, Bachman MA. Metallomics 2015; 7: 986
  • 42 Schmiederer T, Rausch S, Valdebenito M, Mantri Y, Mösker E, Baramov T, Stelmaszyk K, Schmieder P, Butz D, Müller SI, Schneider K, Baik M.-H, Hantke K, Süssmuth RD. Angew. Chem. Int. Ed. 2011; 50: 4230
  • 43 Baramov T, Keijzer K, Irran E, Mösker E, Baik MH, Süssmuth R. Chem. Eur. J. 2013; 19: 10536
  • 44 Saha P, Yeoh BS, Olvera RA, Xiao X, Singh V, Awasthi D, Subramanian BC, Chen Q, Dikshit M, Wang Y, Parent CA, Vijay-Kumar M. J. Immunol. 2017; 198: 4293
  • 45 Behnsen J, Rafatellu M. Mbio 2016; 7: e01906
  • 46 Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Trends Mol. Med. 2016; 1471
  • 47 Saha P, Yeoh BS, Xiao X, Golonka RM, Kumarasamy S, Vijay-Kumar M. Biochem. Pharmacol. 2019; 168: 71
  • 48 Saha P, Yeoh BS, Xiao X, Golonka RM, Abokor AA, Wenceslau CF, Shah YM, Joe B, Vijay-Kumar M. Gut Microbes 2020; 12: 1841548
  • 49 Qi B, Han M. Cell 2018; 175: 571
  • 50 Costas M, Mehn MP, Jensen MP, Que L. Chem. Rev. 2004; 104: 939
  • 51 Scarrow RC, Ecker DJ, Ng C, Liu S, Raymond KN. Inorg. Chem. 1991; 30: 900
  • 52 Loomis LD, Raymond KN. Inorg. Chem. 1991; 30: 906
  • 53 Müller SI, Valdebenito M, Hantke K. BioMetals 2009; 22: 691
  • 54 Fischbach MA, Lin H, Liu DR, Walsh CT. Nat. Chem. Biol. 2006; 2: 132
  • 55 Guo C, Steinberg LK, Cheng M, Song JH, Henderson JP, Gross ML. ACS Chem. Biol. 2020; 15: 1154
  • 56 Zhu W, Winter MG, Spiga L, Beiting DP, Hooper LV, Winter SE, Zhu W, Winter MG, Spiga L, Hughes ER, Chanin R, Mulgaonkar A, Hooper LV, Winter SE. Cell Host Microbe 2020; 27: 1
  • 57 Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M, Borregaard N, Joe B, Vijay-Kumar M. Nat. Commun. 2015; 6: 7113
  • 58 Vander ElstN, Breyne K, Steenbrugge J, Gibson AJ, Smith DG. E, Germon P, Werling D, Meyer E. Front. Vet. Sci. 2020; 7: 576583
  • 59 Wang H, Zeng X, Lin J. Vaccine 2020; 38: 7764
  • 60 Abergel RJ, Clifton MC, Pizarro JC, Warner JA, Shuh DK, Strong RK, Raymond KN. J. Am. Chem. Soc. 2008; 130: 11524
  • 61 Wang H, Zeng X, Mo Y, He B, Lin H, Lin J. Appl. Environ. Microbiol. 2019; 85: e00358
  • 62 Zeng X, Wang H, Huang C, Logue CM, Barbieri NL, Nolan LK, Lin J. Front. Immunol. 2021; 12: 629480
  • 63 Hantke K, Nicholson G, Rabsch W, Winkelmann G. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 3677
  • 64 Nagy TA, Moreland SM, Andrews-Polymenis H, Detweiler CS. Infect. Immun. 2013; 81: 4063
  • 65 Crouch ML. V, Castor M, Karlinsey JE, Kalhorn T, Fang FC. Mol. Microbiol. 2008; 67: 971
  • 66 Lam MM. C, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, Holt KE. Genome Med. 2018; 10: 77
  • 67 Caza M, Garénaux A, Lépine F, Dozois CM. Mol. Microbiol. 2015; 97: 717
  • 68 Chairatana P, Zheng T, Nolan EM. Chem. Sci. 2015; 6: 4458
  • 69 Fiedler H, Krastel P, Müller J, Gebhardt K, Zeeck A. FEMS Microbiol. Lett. 2001; 196: 147
  • 70 Mislin GL, Schalk IJ. Metallomics 2014; 6: 408
  • 71 Heymann P, Ernst JF, Winkelmann G. BioMetals 2000; 13: 65
  • 72 Lesuisse E, Simon-Casteras M, Labbe P. Microbiology 1998; 144: 3455
  • 73 Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H. Biochem. J. 2003; 371: 505
  • 74 Haas H. Nat. Prod. Rep. 2014; 31: 1266
  • 75 Karpishin TB, Dewey TM, Raymond KN. J. Am. Chem. Soc. 1993; 115: 1842
  • 76 Hou Z, Stack TD. P, Sunderland CJ, Raymond KN. Inorg. Chim. Acta 1997; 263: 341
  • 77 Karpishin TB, Raymond KN. Angew. Chem. Int. Ed. 1992; 31: 466
  • 78 Abergel RJ, Warner JA, Shuh DK, Raymond KN. J. Am. Chem. Soc. 2006; 128: 8920
  • 79 Dean CR, Poole K. J. Bacteriol. 1993; 175: 317
  • 80 Moynié L, Milenkovic S, Mislin GL. A, Gasser V, Malloci G, Baco E, Mccaughan RP, Page MG. P, Schalk IJ, Ceccarelli M, Naismith JH. Nat. Commun. 2019; 10: 3673
  • 81 Dean CR, Neshat S, Poole K. J. Bacteriol. 1996; 178: 5361
  • 82 Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MG. P, Naismith JH, Köhler T. Antimicrob. Agents Chemother. 2017; 61: e02531
  • 83 Noinaj N, Rollauer SE, Buchanan SK. Curr. Opin. Struct. Biol. 2015; 31: 35
  • 84 Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S, Naismith JH, Davin-Regli A, Ceccarelli M, van den Berg B, Winterhalter M, Pagès J.-M. Nat. Rev. Microbiol. 2020; 18: 164
  • 85 Johnstone TC, Nolan EM. J. Am. Chem. Soc. 2017; 139: 15245
  • 86 Peuckert F, Miethke M, Albrecht AG, Essen LO, Marahiel MA. Angew. Chem. Int. Ed. 2009; 48: 7924
  • 87 Peuckert F, Ramos-Vega AL, Miethke M, Schwörer CJ, Albrecht AG, Oberthür M, Marahiel MA. Chem. Biol. 2011; 18: 907
  • 88 Liu X, Du Q, Wang Z, Liu S, Li N, Chen Y, Zhu C, Zhu D, Wei T, Huang Y, Xu S, Gu L. FEBS Lett. 2012; 586: 1240
  • 89 Flores Jiménez RH, Cafiso DS. Biochemistry 2012; 51: 3642
  • 90 Klebba PE. J. Bacteriol. 2016; 198: 1013
  • 91 Jordan LD, Zhou Y, Smallwood CR, Lill Y, Ritchie K, Yip WT, Newton SM, Klebba PE. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 11553
  • 92 Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A, Yang T, Scott DC, Long NJ, Newton SM, Klebba PE. J. Biol. Chem. 2020; 295: 4974
  • 93 Higgs PI, Larsen RA, Postle K. Mol. Microbiol. 2002; 44: 271
  • 94 Chimento DP, Kadner RJ, Wiener MC. Proteins Struct. Funct. Genet. 2005; 59: 240
  • 95 Shultis DD, Purdy MD, Banchs CN, Wiener MC. Science 2006; 312: 1396
  • 96 Moeck GS, Coulton JW. Mol. Microbiol. 1998; 28: 675
  • 97 Köster W. Res. Microbiol. 2001; 152: 291
  • 98 Braun V. Int. J. Med. Microbiol. 2001; 291: 67
  • 99 Larsen NA, Lin H, Wei R, Fischbach MA, Walsh CT. Biochemistry 2006; 45: 10184
  • 100 Perraud Q, Cantero P, Roche B, Gasser V. Mol. Cell. Proteomics 2020; 19: 589
  • 101 Pelfrene E, Botgros R, Cavaleri M. Antimicrob. Resist. Infect. Control 2021; 10: 21
  • 102 Lucien MA. B, Canarie MF, Kilgore PE, Jean-Denis G, Fénélon N, Pierre M, Cerpa M, Joseph GA, Maki G, Zervos MJ, Dely P, Boncy J, Sati H, del Rio A, Ramon-Pardo P. Int. J. Infect. Dis. 2021; 104: 250
  • 103 Sriram A, Kapoor G, Craig J, Balasubramanian R, Brar S, Criscuolo N, Hamilton A, Klein E, Tseng K, Van Boeckel TP, Laxminarayan R. The State of the World’s Antibiotics 2021 . The Center for Disease Dynamics, Economics & Policy (CDDEP); Washington DC: 2021
  • 104 O’Neill, J. Tackling Drug-Resistant Infections Globally 2016.
  • 105 Davies J. Can. J. Infect. Dis. Med. Microbiol. 2006; 17: 287
  • 106 Moloney MG. Trends Pharmacol. Sci. 2016; 37: 689
  • 107 Klahn P, Brönstrup M. Curr. Top. Microbiol. Immunol. 2016; 389: 365
  • 108 Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Clin. Infect. Dis. 2009; 48: 1
  • 109 Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D. Clin. Infect. Dis. 2013; 56: 1685
  • 110 Peterson LR. Clin. Infect. Dis. 2009; 49: 992
  • 111 Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics (WHO/EMP/IAU/2017.12). World Health Organization; Geneva: 2017
  • 112 Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis (WHO/EMP/IAU/2017.12). World Health Organization; Geneva: 2017
  • 113 Cooper MA, Shlaes D. Nature 2011; 472: 32
  • 114 Piddock LJ. V. Lancet Infect. Dis. 2012; 12: 249
  • 115 Ventola CL. J. Formul. Manag. 2015; 40: 277
  • 116 Wright GD. ACS Infect. Dis. 2015; 1: 80
  • 117 Li X.-Z, Plésiat P, Nikaido H. Clin. Microbiol. Rev. 2015; 28: 337
  • 118 Farhat N, Ali A, Bonomo RA, Khan AU. Drug Discov. Today 2020; 25: 2307
  • 119 Zhou G, Shi Q, Huang X, Xie X. Int. J. Mol. Sci. 2015; 16: 21711
  • 120 Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. Antimicrob. Agents Chemother. 2010; 54: 288
  • 121 Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E. BioMetals 2009; 22: 3
  • 122 Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Nat. Prod. Rep. 2007; 24: 708
  • 123 Budzikiewicz H. Curr. Top. Med. Chem. 2001; 1: 73
  • 124 Górska A, Sloderbach A, Marszałł MP. Trends Pharmacol. Sci. 2014; 35: 442
  • 125 Ji C, Juárez-Hernández RE, Miller MJ. Future Med. Chem. 2012; 4: 297
  • 126 Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Nanomed. Nanotechnol., Biol. Med. 2016; 12: 2215
  • 127 Page MG. P. Ann. N. Y. Acad. Sci. 2013; 1277: 115
  • 128 Bickel H, Gaeumann E, Keller-Schierlein W, Prelog V, Vischer E, Wettstein A, Zaehner H. Experentia 1960; 16: 129
  • 129 Benz G, Schröder T, Kurz J, Wünsche C, Karl W, Steffens G, Pfitzner J, Schmidt D. Angew. Chem. Int. Ed. 1982; 21: 527
  • 130 Zeng Y, Kulkarni A, Yang Z, Patil PB, Zhou W, Chi X, Van Lanen S, Chen S. ACS Chem. Biol. 2012; 7: 1565
  • 131 Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ, Warr SR. J. Antibiot. 2000; 53: 1346
  • 132 Pramanik A, Braun V. J. Bacteriol. 2006; 188: 3878
  • 133 Braun V, Gunthner K, Hantke K, Zimmermann L. J. Bacteriol. 1983; 156: 308
  • 134 Vertesy L, Aretz W, Fehlhaber H.-W, Kogler H. Helv. Chim. Acta 1995; 78: 46
  • 135 Bickel H, Mertens P, Prelog V, Seibl J, Walser A. Antimicrob. Agents Chemother. 1965; 5: 951
  • 136 Tsukiura H, Okanishi M, Omori T, Koshiyama H, Miyaki T, Kitajima H, Kawaguchi H. J. Antibiot. 1964; 17: 3947
  • 137 Huber P, Leuenberger H, Keller-Schierlein W. Helv. Chim. Acta 1986; 69: 236
  • 138 Palmer JD, Mortzfeld BM, Piattelli E, Silby MW, McCormick BA, Bucci V. ACS Infect. Dis. 2020; 6: 672
  • 139 Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S. J. Biol. Chem. 2004; 279: 28233
  • 140 Strahsburger E, Baeza M, Monasterio O, Lagos R. Antimicrob. Agents Chemother. 2005; 49: 3083
  • 141 De Lorenzo V, Pugsley AP. Antimicrob. Agents Chemother. 1985; 27: 666
  • 142 Bieler S, Silva F, Soto C, Belin D. J. Bacteriol. 2006; 188: 7049
  • 143 Destoumieux-Garzón D, Thomas X, Santamaria M, Goulard C, Barthélémy M, Boscher B, Bessin Y, Molle G, Pons AM, Letellier L, Peduzzi J, Rebuffat S. Mol. Microbiol. 2003; 49: 1031
  • 144 Sargun A, Gerner RR, Raffatellu M, Nolan EM. J. Infect. Dis. 2021; 223: S307
  • 145 Wencewicz TA, Miller MJ. Top. Med. Chem. 2017; 26: 151
  • 146 Schalk I. J. Clin. Microbiol. Infect. 2018; 24: 801
  • 147 Negash KH, Norris JK. S, Hodgkinson JT. Molecules 2019; 24
  • 148 Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. Eur. J. Med. Chem. 2019; 182: 111615
  • 149 Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D. BioMetals 2009; 22: 615
  • 150 Li K, Chen WH, Bruner SD. BioMetals 2016; 29: 377
  • 151 Petrik M, Zhai C, Haas H, Decristoforo C. Clin. Transl. Imaging 2017; 5: 15
  • 152 Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Chem. Sci. 2021; 12: 10179
  • 153 Ferreira K, Hu HY, Fetz V, Prochnow H, Rais B, Müller PP, Brönstrup M. Angew. Chem. Int. Ed. 2017; 56: 8272
  • 154 Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Biosens. Bioelectron. 2018; 117: 1
  • 155 Southwell JW, Black CM, Duhme-Klair AK. ChemMedChem 2021; 16: 1063
  • 156 Zheng T, Nolan EM. Metallomics 2012; 4: 866
  • 157 Sattely ES, Fischbach MA, Walsh CT. Nat. Prod. Rep. 2008; 25: 757
  • 158 Reitz ZL, Sandy M, Butler A. Metallomics 2017; 9: 824
  • 159 Gehring AM, Bradley KA, Walsh CT. Biochemistry 1997; 36: 8495
  • 160 May JJ, Wendrich TM, Marahiel MA. J. Biol. Chem. 2001; 276: 7209
  • 161 Bluhm ME, Kim SS, Dertz EA, Raymond KN. J. Am. Chem. Soc. 2002; 124: 2436
  • 162 Budzikiewicz H, Bössenkamp A, Taraz K, Pandey A, Meyer J.-M. Z. Naturforsch. C 1997; 52: 551
  • 163 Wen Y, Wu X, Teng Y, Qian C, Zhan Z, Zhao Y, Li O. Environ. Microbiol. 2011; 13: 2726
  • 164 Patzer SI, Braun V. J. Bacteriol. 2010; 192: 426
  • 165 Matsuo Y, Kanoh K, Jang JH, Adachi K, Matsuda S, Miki O, Kato T, Shizuri Y. J. Nat. Prod. 2011; 74: 2371
  • 166 Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A. J. Am. Chem. Soc. 2014; 136: 5615
  • 167 Sandy M, Han A, Blunt J, Munro M, Haygood M, Butler A. J. Nat. Prod. 2010; 73: 1038
  • 168 Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CA. G, Distel DL, Butler A, Haygood MG. PLoS One 2013; 8 (10) : e76151
  • 169 Süssmuth RD, Mainz A. Angew. Chem. Int. Ed. 2017; 56: 3770
  • 170 Valdebenito M, Bister B, Reissbrodt R, Hantke K, Winkelmann G. Int. J. Med. Microbiol. 2005; 295: 99
  • 171 Yu X, Dai Y, Yang T, Gagné MR, Gong H. Tetrahedron 2011; 67: 144
  • 172 Foshag D, Campbell C, Pawelek PD. Biochim. Biophys. Acta, Proteins Proteomics 2014; 1844: 1619
  • 173 Fischbach MA, Lin H, Liu DR, Walsh CT. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 571
  • 174 Caza M, Lépine F, Milot S, Dozois CM. Infect. Immun. 2008; 76: 3539
  • 175 Nolan EM, Fischbach MA, Koglin A, Walsh CT. J. Am. Chem. Soc. 2007; 129: 14336
  • 176 Nolan EM, Walsh CT. Biochemistry 2008; 47: 9289
  • 177 Corey EJ, Bhattacharyya S. Tetrahedron Lett. 1977; 18: 3919
  • 178 Rastetter WH, Erickson TJ, Venuti MC. J. Org. Chem. 1981; 46: 3579
  • 179 Rogers HJ. J. Chem. Soc., Perkin Trans. 1 1995; 3073
  • 180 Shanzer A, Libman J. J. Chem. Soc., Chem. Commun. 1983; 846
  • 181 Ramirez RJ. A, Karamanukyan L, Ortiz S, Gutierrez CG. Tetrahedron Lett. 1997; 38: 749
  • 182 Marinez ER, Salmassian EK, Lau TT, Gutierrez CG. J. Org. Chem. 1996; 61: 3548
  • 183 Rastetter WH, Erickson TJ, Venuti MC. J. Org. Chem. 1980; 45: 5011
  • 184 Masamune S, Hayase Y, Chan WS. W. K, Bates GS. J. Am. Chem. Soc. 1977; 99: 6756
  • 185 Neilands JB, Erickson TJ, Rastetter WH. J. Biol. Chem. 1981; 256: 3831
  • 186 Shanzer A, Libman J, Frolow F. J. Am. Chem. Soc. 1981; 103: 7339
  • 187 Shanzer A, Libman J. J. Organomet. Chem. 1982; 239: 301
  • 188 Sheehan JC, Hasspacher K, Yeh YL. J. Am. Chem. Soc. 1959; 81: 6086
  • 189 Considine WJ. J. Organomet. Chem. 1966; 5: 263
  • 190 Meyer M, Telford JR, Cohen SM, White DJ, Xu J, Raymond KN, March RV. J. Am. Chem. Soc. 1997; 119: 10093
  • 191 Gong H, Gagné MR. J. Am. Chem. Soc. 2008; 130: 12177
  • 192 Lee AA, Chen YC. S, Ekalestari E, Ho SY, Hsu NS, Kuo TF, Wang TA. S. A. Angew. Chem. Int. Ed. 2016; 55: 12338
  • 193 Gantt RW, Peltier-Pain P, Cournoyer WJ, Thorson JS. Nat. Chem. Biol. 2011; 7: 685
  • 194 Isied SS, Kuo G, Raymond KN. J. Am. Chem. Soc. 1976; 98: 1763
  • 195 Sargun A, Sassone-Corsi M, Zheng T, Raffatellu M, Nolan EM. ACS Infect. Dis. 2021; 7: 1248
  • 196 Nodwell MB, Britton R. ACS Infect. Dis. 2020; 7: 153
  • 197 du Moulinet d’Hardemare A, Alnaga N, Serratrice G, Pierre JL. Bioorg. Med. Chem. Lett. 2008; 18: 6476
  • 198 Baramov T, Schmid B, Ryu H, Jeong J, Keijzer K, von Eckardstein L, Baik MH, Süssmuth RD. Chem. Eur. J. 2019; 25: 6955
  • 199 Weizman H, Shanzer A. Chem. Commun. 2000; 2013
  • 200 Du Moulinet D’Hardemare A, Gellon G, Philouze C, Serratrice G. Inorg. Chem. 2012; 51: 12142
  • 201 Zheng T, Bullock JL, Nolan EM. J. Am. Chem. Soc. 2012; 134: 18388
  • 202 Zheng T, Nolan EM. J. Am. Chem. Soc. 2014; 136: 9677
  • 203 Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM. J. Am. Chem. Soc. 2018; 140: 5193
  • 204 Sargun A, Johnstone TC, Zhi H, Raffatellu M, Nolan E. Chem. Sci. 2021; 12: 4041
  • 205 Abergel RJ, Moore EG, Strong RK, Raymond KN. J. Am. Chem. Soc. 2006; 128: 10998
  • 206 Cohen SM, Raymond KN. Inorg. Chem. 2000; 39: 3624
    • 207a E. coli ATCC 33475 (ΔentA) lacks genes, necessary for the biosynthesis of Ent, but retains the capacity to import and metabolize Ent.
    • 207b Wayne R, Frick K, Neilands JB. J. Bacteriol. 1976; 126: 7
    • 207c E. coli H1187 (ΔfepA) lacks the outer membrane receptor for Ent and therefore cannot import the siderophore.
    • 207d E. coli K-12 JW0576 (Δfes) can accumulate ferric Ent, but cannot release the iron because it is deficient in the Ent esterase Fes.
    • 207e P. aeruginosa K648 (Δpvd/pch) is deficient in the biosynthesis of both pyoverdine (Pvd) and pyochelin(Pch) siderophores.
    • 207f P. aeruginosa K407 (Δpvd/pFr) is deficient in the biosynthesis of Pvd and lacks the enterobactin specific siderophore receptor PfeA.
    • 207g Poole K, Young L, Neshat S. J. Bacteriol. 1990; 172: 6991
    • 207h E. coli K-12 (+iroD) is a mutant of the non-pathogenic laboratory strain E. coli K-12 which was complemented with the iroD gene.
    • 207i E. coli CFT073 (ΔiroD) lacks the gene necessary for the expression of iroD.
    • 207j E. coli K-12 (ΔentA) comparable to E. coli ATCC 33475 (ΔentA), lacks genes, necessary for the biosynthesis of enterobactin, but retains the capacity to import and metabolize enterobactin.
  • 208 Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN. J. Am. Chem. Soc. 2009; 131: 12682
  • 209 Mulvey MA, Schilling JD, Hultgren SJ. Infect. Immun. 2001; 69: 4572
  • 210 Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren JW. Infect. Immun. 1990; 58: 1281
  • 211 Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. PLoS Pathog. 2009; 5: e1000305
  • 212 Bourgat Y, Mikolai C, Stiesch M, Klahn P, Menzel H. Antibiotics 2021; 10: 653
  • 213 Cramariuc O, Rog T, Javanainen M, Monticelli L, Polishchuk AV, Vattulainen I. Biochim. Biophys. Acta, Biomembr. 2012; 1818: 2563
  • 214 Cormier R, Burda WN, Harrington L, Edlinger J, Kodigepalli KM, Thomas J, Kapolka R, Roma G, Anderson BE, Turos E, Shaw LN. Bioorg. Med. Chem. Lett. 2012; 22: 6513
  • 215 Kaper JB, Nataro JP, Mobley HL. T. Nat. Rev. Microbiol. 2004; 2: 123
  • 216 Valdebenito M, Müller SI, Hantke K. FEMS Microbiol. Lett. 2007; 277: 182
  • 217 Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. Mol. Cell 2002; 10: 1033
  • 218 Centers for Disease Control and Prevention (CDC). Surveillance for Foodborne Disease Outbreaks, United States, 2017, Annual Report. U.S. Department of Health and Human Services, CDC; Atlanta GA: 2019
  • 219 Neumann W, Nolan EM. J. Biol. Inorg. Chem. 2018; 23: 1025
  • 220 Shanzer A, Libman J, Lifson S, Felder CE. J. Am. Chem. Soc. 1986; 108: 7609
  • 221 Glindemann CP, Backenköhler A, Strieker M, Wittstock U, Klahn P. ChemBioChem 2019; 20: 2341
  • 222 Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543
  • 223 Nicolaou KC, Estrada AA, Zak M, Lee SH, Safina BS. Angew. Chem. Int. Ed. 2005; 44: 1378
  • 224 Gerlach H, Thalmann A. Helv. Chim. Acta 1974; 57: 2661
  • 225 Corey EJ, Nicolaou KC. J. Am. Chem. Soc. 1974; 96: 5614
  • 226 Ji C, Miller PA, Miller MJ. J. Am. Chem. Soc. 2012; 134: 9898
  • 227 Ohi N, Aoki B, Kuroki T, Matsumoto M, Kojima K, Nehashi T. J. Antibiot. 1987; 40: 22
  • 228 Nicolaou KC, Yin J, Mandal D, Erande RD, Klahn P, Jin M, Aujay M, Sandoval J, Gavrilyuk J, Vourloumis D. J. Am. Chem. Soc. 2016; 138: 1698
  • 229 Klahn P, Fetz V, Ritter A, Collisi W, Hinkelmann B, Arnold T, Tegge W, Rox K, Hüttel S, Mohr KI, Wink J, Stadler M, Wissing J, Jänsch L, Brönstrup M. Chem. Sci. 2019; 10: 5187
  • 230 Neilands JB, Konopka K. Biochemistry 1984; 23: 2122
  • 231 Aisen P, Listowsky I. Annu. Rev. Biochem. 1980; 49: 357
  • 232 Pollack JR, Neilands JB. Biochem. Biophys. Res. Commun. 1970; 38: 989
  • 233 Zhou T, Ma Y, Kong X, Hider RC. Dalton Trans. 2012; 41: 6371
  • 234 Hider RC, Singh S, Porter JB. Proc. R. Soc. Edinburgh, Sect. B: Biol. Sci. 1992; 99 (01) 137-168
  • 235 du Moulinet d’Hardemare A, Serratrice G, Pierre J.-L. Mini-Rev. Org. Chem. 2010; 7: 125
  • 236 Baco E, Hoegy F, Schalk IJ, Mislin GL. A. Org. Biomol. Chem. 2014; 12: 749
  • 237 Perraud Q, Cantero P, Munier M, Hoegy F, Zill N, Gasser V, Mislin GL. A, Ehret-Sabatier L, Schalk IJ. Microorganisms 2020; 8: 1
  • 238 D’Amato A, Ghosh P, Costabile C, Della Sala G, Izzo I, Maayan G, De Riccardis F. Dalton Trans. 2020; 49: 6020
  • 239 Oh J, Kang D, Hong S, Kim SH, Choi JH, Seo J. Dalton Trans. 2021; 50: 3459
  • 240 Rodgers SJ, Lee C, Ng CY, Raymond KN. Inorg. Chem. 1987; 26: 1622
  • 241 Anderson MT, Armstrong SK. J. Bacteriol. 2006; 188: 5731
  • 242 Heinisch L, Gebhardt P, Heidersbach R, Reissbrodt R, Möllmann U. BioMetals 2002; 15: 133
  • 243 McMurry TJ, Rodgers SJ, Raymond KN. J. Am. Chem. Soc. 1987; 109: 3451
  • 244 Thomas F, Beguin C, Pierre JL, Serratrice G. Inorg. Chim. Acta 1999; 291: 148
  • 245 Baret P, Béguin C, Gaude D, Gellon G, Mourral C, Pierre JL, Serratrice G, Favier A. Tetrahedron 1994; 50: 2077
  • 246 Baret P, Beaujolais V, Béguin C, Gaude D, Pierre JL, Serratrice G. Eur. J. Inorg. Chem. 1998; 613
  • 247 Pierre J, Serratrice G, Baret P, Be C, Saint-aman E, Thomas F, Laulhe J. Eur. J. Inorg. Chem. 2000; 1219
  • 248 Serratrice G, Biaso F, Thomas F, Béguin C. Eur. J. Inorg. Chem. 2004; 1552
  • 249 Baret P, Beguin CG, Boukhalfa H, Caris C, Laulhere J.-P, Pierre J.-L, Serratrice G. J. Am. Chem. Soc. 1995; 117: 9760
  • 250 Serratrice G, Boukhalfa H, Béguin C, Baret P, Caris C, Pierre JL. Inorg. Chem. 1997; 36: 3898
  • 251 Caris C, Baret P, Beguin C, Serratrice G, Pierre JL, Laulhère JP. Biochem. J. 1995; 312: 879
  • 252 Henry C, Rakba N, Imbert D, Thomas F, Baret P, Serratrice G, Gaude D, Pierre JL, Ward RJ, Crichton RR, Lescoat G. Biochem. Pharmacol. 2001; 62: 1355
  • 253 Caris C, Baret P, Pierre J.-L, Serratrice G. Tetrahedron 1996; 52: 4659
  • 254 Ng CY, Rodgers SJ, Raymond KN. Inorg. Chem. 1989; 28: 2062
  • 255 Streater M, Taylor PD, Hider RC, Porter J. J. Med. Chem. 1990; 33: 1749
  • 256 Xiao G, Der Van Helm D, Hider RC, Rai BL. J. Phys. Chem. 1996; 100: 2345
  • 257 Gyparaki M, Porter JB, Hirani S, Streater M, Hider RC, Huehns ER. Acta Haematol. 1987; 78: 217
  • 258 Piyamongkol S, Zhou T, Liu ZD, Khodr HH, Hider RC. Tetrahedron Lett. 2005; 46: 1333
  • 259 Xie Y.-Y, Liu M.-S, Hu P.-P, Kong X.-L, Qiu D.-H, Xu J.-L, Hider RC, Zhou T. Med. Chem. Res. 2013; 22: 2351
  • 260 Xu J, Churchill DG, Botta M, Raymond KN. Inorg. Chem. 2004; 43: 5492
  • 261 Xu J, Franklin SJ, Whisenhunt DW, Raymond KN. J. Am. Chem. Soc. 1995; 117: 7245
  • 262 Doble DM. J, Botta M, Wang J, Aime S, Barge A, Raymond KN. J. Am. Chem. Soc. 2001; 123: 10758
  • 263 Xu J, O’Sullivan B, Raymond KN. Inorg. Chem. 2002; 41: 6731
  • 264 Puerta DT, Botta M, Jocher CJ, Werner EJ, Avedano S, Raymond KN, Cohen SM. J. Am. Chem. Soc. 2006; 128: 2222
  • 265 Datta A, Raymond KN. Acc. Chem. Res. 2009; 42: 938
  • 266 Stintzi A, Barnes C, Xu J, Raymond KN. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 10691
  • 267 Turcot I, Stintzi A, Xu J, Raymond KN. J. Biol. Inorg. Chem. 2000; 5: 634
  • 268 Dertz EA, Xu J, Raymond KN. Inorg. Chem. 2006; 45: 5465
  • 269 Naikare H, Butcher J, Flint A, Xu J, Raymond KN, Stintzi A. Metallomics 2013; 5: 988
  • 270 Cohen SM, O’Sullivan B, Raymond KN. Inorg. Chem. 2000; 39: 4339
  • 271 Cohen SM, Xu J, Radkov E, Raymond KN, Botta M, Barge A, Aime S. Inorg. Chem. 2000; 39: 5747
  • 272 Albrecht-Gary AM, Blanc S, Biaso F, Thomas F, Baret P, Gellon G, Pierre JL, Serratrice G. Eur. J. Inorg. Chem. 2003; 2596
  • 273 Hoette TM, Abergel RJ, Xu J, Strong RK, Raymond KN. J. Am. Chem. Soc. 2008; 130: 17584
  • 274 Baral M, Gupta A, Akbar R, Kanungo BK. J. Appl. Chem. 2016; 2016: 3757418
  • 275 Chaves S, Marques SM, Matos AM. F, Nunes A, Gano L, Tuccinardi T, Martinelli A, Santos MA. Chem. Eur. J. 2010; 16: 10535
  • 276 Xu B, Kong X.-L, Zhou T, Qiu DH, Chen YL, Liu MS, Yang RH, Hider RC. Bioorg. Med. Chem. Lett. 2011; 21: 6376
  • 277 Harris WR, Weitl FL, Raymond KN. J. Chem. Soc., Chem. Commun. 1979; 177
  • 278 Weitl FL, Harris WR, Raymond KN. J. Med. Chem. 1979; 22: 1281
  • 279 Weitl FL, Raymond KN. J. Am. Chem. Soc. 1979; 101: 2728
  • 280 Carrano CJ, Raymond KN. J. Am. Chem. Soc. 1979; 101: 5401
  • 281 Pecoraro VL, Weitl FL, Raymond KN. J. Am. Chem. Soc. 1981; 103: 5133
  • 282 Kiggen W, Vögtle F. Angew. Chem. Int. Ed. 1984; 23: 714
  • 283 Rai BL, Khodr H, Hider RC. Tetrahedron 1999; 55: 1129
  • 284 Xu J, Kullgren B, Durbin PW, Raymond KN. J. Med. Chem. 1995; 38: 2606
  • 285 Stutte P, Kiggen W, Vögtle F. Tetrahedron 1987; 43: 2065
  • 286 McMurry TJ, Hosseini MW, Garrett TM, Hahn FE, Reyes ZE, Raymond KN. J. Am. Chem. Soc. 1987; 109: 7196
  • 287 Venuti MC, Rastetter WH, Neilands JB. J. Med. Chem. 1979; 22: 123
  • 288 Matzanke BF, Ecker DJ, Yang TS, Huynh BH, Müller G, Raymond KN. J. Bacteriol. 1986; 167: 674
  • 289 Heidinger S, Braun V, Pecoraro VL, Raymond KN. J. Bacteriol. 1983; 153: 109
  • 290 Ecker DJ, Loomis LD, Cass ME, Raymond KN. J. Am. Chem. Soc. 1988; 110: 2457
  • 291 Pinkert L, Lai Y, Peukert C, Hotop S, Karge B, Schulze LM, Grunenberg J, Brönstrup M. J. Med. Chem. 2021; 64: 15440
  • 292 Zhang Q, Jin B, Shi Z, Wang X, Liu Q, Lei S, Peng R. Sci. Rep. 2016; 6: 34024
  • 293 Hayashi M, Ishii M, Hiratani K, Saigo K. Tetrahedron Lett. 1998; 39: 6215
  • 294 Wang J, Oyler KD, Bernhard S. Inorg. Chem. 2007; 46: 5700
  • 295 Ong SA, Peterson T, Neilands JB. J. Biol. Chem. 1979; 254: 1860
  • 296 Eng-Wilmot DL, van der Helm D. J. Am. Chem. Soc. 1980; 102: 7719
  • 297 Griffiths GL, Sigel SP, Payne SM, Neilands JB. J. Biol. Chem. 1984; 259: 383
  • 298 Kretchmar SA, Raymond KN. J. Am. Chem. Soc. 1986; 108: 6212
  • 299 Blainey J, Swanson S, Weitl FL, Raymond KN, Durbin PW. J. Med. Chem. 1981; 24: 5401
  • 300 Weitl FL, Raymond KN. J. Org. Chem. 1981; 46: 5234
  • 301 Kappel MJ, Pecoraro VL, Raymond KN. Inorg. Chem. 1985; 24: 2447
  • 302 Sharma SK, Miller MJ, Payne SM. J. Med. Chem. 1989; 32: 357
  • 303 Abergel RJ, Raymond KN. Inorg. Chem. 2006; 45: 3622
  • 304 Ghosh A, Miller MJ. J. Org. Chem. 1993; 58: 7652
  • 305 Ghosh M, Miller MJ. Bioorg. Med. Chem. 1996; 4: 43
  • 306 Diarra MS, Lavoie MC, Jacques M, Darwish I, Dolence EK, Dolence JA, Ghosh A, Ghosh M, Miller MJ, Malouin F. Antimicrob. Agents Chemother. 1996; 40: 2610
  • 307 Ghosh A, Ghosh M, Niu C, Malouin F, Moellmann U, Miller MJ. Chem. Biol. 1996; 3: 1011
  • 308 Wencewicz TA, Miller MJ. J. Med. Chem. 2013; 56: 4044
  • 309 Bohac TJ, Fang L, Banas VS, Giblin DE, Wencewicz TA. ACS Infect. Dis. 2021; 7: 2138
  • 310 Proschak A, Lubuta P, Grün P, Löhr F, Wilharm G, De Berardinis V, Bode HB. ChemBioChem 2013; 14: 633
  • 311 Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckow M, Yu H, Li S, Huang W, Zajicek J, Miller MJ. J. Med. Chem. 2017; 60: 4577
  • 312 Ghosh M, Lin Y.-M, Miller PA, Möllmann U, Boggess W, Miller MJ. ACS Infect. Dis. 2018; 4: 1529
  • 313 Ji C, Miller MJ. BioMetals 2015; 28: 541
  • 314 Ghosh M, Miller PA, Miller MJ. J. Antibiot. 2020; 73: 152
  • 315 Okoh OA, Klahn P. ChemBioChem 2018; 19: 1668
  • 316 Jimidar CC, Grunenberg J, Karge B, Fuchs HL. S, Brönstrup M, Klahn P. Chem. Eur. J. 2021; 28: e202103525
  • 317 Bollinger JE, Mague JT, Roundhill DM. Inorg. Chem. 1994; 33: 1241
  • 318 Bollinger JE, Mague JT, O’Connor CJ, Banks WA, Roundhill DM. J. Chem. Soc., Dalton Trans. 1995; 1677
  • 319 Sahoo SK, Bera RK, Kanungo BK, Baral M. Spectrochim. Acta, Part A 2012; 89: 322
  • 320 Baral M, Sahoo SK, Kanungo BK. J. Inorg. Biochem. 2008; 102: 1581
  • 321 Kanungo BK, Baral M, Sahoo SK, Muthu SE. Spectrochim. Acta, Part A 2009; 74: 544
  • 322 Bera RK, Baral M, Sahoo SK, Kanungo BK. Spectrochim. Acta, Part A 2015; 134: 165
  • 323 Grazina R, Gano L, Šebestík J, Santos MA. J. Inorg. Biochem. 2009; 103: 262
  • 324 Akbar R, Baral M, Kanungo BK. Spectrochim. Acta, Part A 2021; 247: 119124
  • 325 Tse B, Kishi Y. J. Org. Chem. 1994; 59: 7807
  • 326 Zhu CF, Qiu DH, Kong X.-L, Hider RC, Zhou T. J. Pharm. Pharmacol. 2013; 65: 512
  • 327 Zhou YJ, Liu MS, Osamah AR, Kong X.-L, Alsam S, Battah S, Xie YY, Hider RC, Zhou T. Eur. J. Med. Chem. 2015; 94: 8
  • 328 Zhou T, Kong X.-L, Hider RC. Dalton Trans. 2019; 48: 3459
  • 329 Imbert D, Thomas F, Baret P, Serratrice G, Gaude D, Pierre JL, Laulhère JP. New J. Chem. 2000; 24: 281
  • 330 Imbert D, Baret P, Gaude D, Gautier-Luneau I, Gellon G, Thomas F, Serratrice G, Pierre JL. Chem. Eur. J. 2002; 8: 1091
  • 331 Fardeau S, Dassonville-Klimpt A, Audic N, Sasaki A, Pillon M, Baudrin E, Mullié C, Sonnet P. Bioorg. Med. Chem. 2014; 22: 4049
  • 332 Kita K, Kida T, Nakatsuji Y, Ikeda I. Chem. Lett. 1997; 26: 405
  • 333 Sun Y, Motekaitis RJ, Martell AE. Inorg. Chim. Acta 1998; 281: 60
  • 334 Akbar R, Baral M, Kanungo BK. Spectrochim. Acta, Part A 2015; 142: 246
  • 335 Akbar R, Baral M, Kanungo BK. RSC Adv. 2015; 5: 16207
  • 336 Besserglick J, Olshvang E, Szebesczyk A, Englander J, Levinson D, Hadar Y, Gumienna-Kontecka E, Shanzer A. Chem. Eur. J. 2017; 23: 13181
  • 337 Neff C, Bellot F, Waern JB, Lambert F, Brandel J, Serratrice G, Gaboriau F, Policar CJ. Inorg. Biochem. 2012; 112: 59
  • 338 Ghosh M, Miller MJ. J. Org. Chem. 1994; 59: 1020
  • 339 Ghosh M, Miller MJ. Bioorg. Med. Chem. 1995; 3: 1519
  • 340 Bernier G, Girijavallabhan V, Murray A, Niyaz N, Ding P, Miller MJ, Malouin F. Antimicrob. Agents Chemother. 2005; 49: 241
  • 341 Möllmann U, Ghosh A, Dolence EK, Dolence JA, Ghosh M, Miller MJ, Reissbrodt R. BioMetals 1998; 11: 1
  • 342 Raymond KN, Müller G, Matzanke BF. Top. Curr. Chem. 1984; 123: 49
  • 343 Harris WR, Raymond KN, Weitl FL. J. Am. Chem. Soc. 1981; 103: 2667
  • 344 Esteves MA, Vaz MC. T, Gonçalves ML. S. S, Farkas E, Santos MA. J. Chem. Soc., Dalton Trans. 1995; 2565
  • 345 Nonat A, Imbert D, Pecaut J, Giraud M, Mazzanti M. Inorg. Chem. 2009; 48: 4207
  • 346 Werner EJ, Avedano S, Botta M, Hay BP, Moore EG, Aime S, Raymond KN. J. Am. Chem. Soc. 2007; 129: 1870
  • 347 Rohini, Baral M, Kanungo BK. New J. Chem. 2018; 42: 16040
  • 348 Gaspar M, Grazina R, Bodor A, Farkas E, Santos MA. J. Chem. Soc., Dalton Trans. 1999; 799
  • 349 Rodgers SJ, Ng CY, Raymond KN. J. Am. Chem. Soc. 1985; 107: 4094
  • 350 Gaspar M, Santos MA, Krauter K, Winkelmann G. BioMetals 1999; 12: 209
  • 351 Brönstrup M, Hu H, Sergeev G. WO 2016026841 A1, 2016
  • 352 Peukert C, Langer LN. B, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. J. Med. Chem. 2021; 64: 12359
  • 353 Huband MD, Ito A, Tsuji M, Sader HS, Fedler A, Flamm RK. Diagn. Microbiol. Infect. Dis. 2017; 88: 198
  • 354 Sato T, Yamawaki K. Clin. Infect. Dis. 2019; 69: S538
  • 355 Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ, Idowu T, Domalaon R, Schweizer F, Zhanel MA, Wiens PR. S. L, Walkty AJ, Noreddin A, Lynch JP, James II. I. Drugs 2019; 79: 271