Synlett 2022; 33(11): 1017-1028
DOI: 10.1055/a-1771-5037
account

Radical Heteroarylation of Alkenes and Alkanes via Heteroaryl ­Migration

Yunlong Wei
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, P. R. of China
,
Xinxin Wu
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, P. R. of China
,
Chen Zhu
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, P. R. of China
b   Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China
› Author Affiliations
The authors are grateful for the financial support from the National Natural Science Foundation of China (21971173, 22001185, and 22171201), the Natural Science Foundation of Jiangsu Province (BK20200852), the Natural Science Fund for Colleges and Universities in Jiangsu Province (20KJB150010), the Project of Scientific and Technological Infrastructure of Suzhou (SZS201905), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


Abstract

Heteroarenes are important units in organic chemistry and are ubiquitous in natural products, pharmaceuticals, and numerous artificial molecules. Despite great efforts devoted to accessing heteroarenes, the development of new methods to efficiently produce heteroarenes remains a long-term interest. Recently, the strategy of radical-mediated heteroaryl migration has supplied a robust toolkit for the synthesis of a diversity of heteroaryl-containing compounds. This Account summarizes our recent achievements in this field and provides insight into the incorporation of heteroarenes into organic skeletons.

1 Introduction

2 Radical-Mediated Heteroarylation of Alkanes and Alkenes via Intramolecular Heteroaryl Migration

2.1 C(sp3)–H Heteroarylation via Intramolecular Heteroaryl Migration

2.2 Difunctionalization of Alkenes via Intramolecular Heteroaryl Migration

3 Intermolecular Difunctionalization of Alkenes via ‘Docking-Migration’ Strategy

3.1 Sulfone-Based Bifunctional Reagents for Difunctionalization of Alkenes by Docking Migration

3.2 Sulfone-Based Reagents for the Synthesis of N-Fused Heteroarenes by Docking Migration

3.3 Tertiary Alcohol Based Bifunctional Reagents for Difunctionalization of Alkenes by Docking Migration

3.4 Diaryl Ether Based Bifunctional Reagents for Difunctionalization of Alkenes by Docking Migration

3.5 Conclusion



Publication History

Received: 18 January 2022

Accepted after revision: 14 February 2022

Accepted Manuscript online:
14 February 2022

Article published online:
14 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Fournet A, Mahieux R, Fakhfakh MA, Franck X, Hocquemiller Figadère RB. Bioorg. Med. Chem. Lett. 2003; 13: 891
    • 1b Duncton MA. MedChemComm 2011; 2: 1135
    • 1c Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F. Eur. J. Med. Chem. 2017; 139: 22
    • 1d Gujjarappa R, Vodnala N, Malakar CC. ChemistrySelect 2020; 5: 8745
    • 1e Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 1f Verbitskiy EV, Rusinov GL, Charushin VN, Chupakhin ON. Russ. Chem. Bull. 2019; 68: 2172
    • 1g Vitaku E, Smith DT, Njardarson JT. Med. Chem. 2014; 57: 10257
    • 2a Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 2b Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 2c Lewis JC, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2007; 129: 5332
    • 2d Nakao Y, Yamada Y, Kashihara N, Hiyama T. J. Am. Chem. Soc. 2010; 132: 13666
    • 2e Fürstner A, Leitner A, Mendez M, Krause H. J. Am. Chem. Soc. 2002; 124: 13856
    • 2f Dreher SD, Dormer PG, Sandrock DL, Molander GA. J. Am. Chem. Soc. 2008; 130: 9257
    • 2g Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429

      For selected examples, see:
    • 3a Cheng H, Zhu Y.-Q, Liu P.-F, Yang K.-Q, Yan J, Sang W, Tang X.-S, Zhang R, Chen C. J. Org. Chem. 2021; 86: 10288
    • 3b Dhanju S, Caravana AC, Thomson RJ. Org. Lett. 2020; 22: 8055

      For selected examples, see:
    • 4a Yeung K.-S, Qiu Z, Farkas ME, Xue Q, Regueiro-Ren A, Yang Z, Bender JA, Good AC, Kadow JF. Tetrahedron Lett. 2008; 49: 6250
    • 4b Yadav PP, Gupta P, Chaturvedi AK, Shukla PK, Maury R. Bioorg. Med. Chem. 2005; 13: 1497
    • 4c Yokoyama N, Arai T. Chem. Commun. 2009; 3285
    • 5a Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 5b Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 5c Jiang H, Studer A. Chem. Soc. Rev. 2020; 49: 1790
    • 6a Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
    • 6b Dong J, Liu Y, Wang Q. Chin. J. Org. Chem. 2021; 41: 3771
    • 7a Deng G.-J, Ueda K, Yanagisawa S, Itami K, Li C.-J. Chem. Eur. J. 2009; 15: 333
    • 7b Li G.-X, Hu X, He G, Chen G. ACS Catal. 2018; 8: 11847
    • 7c Liang X.-A, Niu L.-B, Wang S.-C, Liu J.-M, Lei A.-W. Org. Lett. 2019; 21: 2441
    • 7d Okugawa N, Moriyama K, Togo H. J. Org. Chem. 2017; 82: 170
    • 7e Proctor RS. J, Phipps RJ. Angew. Chem, Int. Ed. 2019; 58: 13666
  • 8 Xue XS, Ji P, Zhou B, Cheng JP. Chem. Rev. 2017; 117: 8622
    • 9a Kundu R, Ball ZT. Org. Lett. 2010; 12: 2460
    • 9b Chen L, Yang J.-C, Xu P, Zhang J.-J, Duan X.-H, Guo L.-N. J. Org. Chem. 2020; 85: 7515
    • 9c Sakamoto R, Kato T, Sakurai S, Maruoka K. Org. Lett. 2018; 20: 1400
  • 10 Čeković Ž, Petrović G. Tetrahedron 1999; 55: 1377
    • 11a Petrović G, Saičić RN, Čeković Z. Tetrahedron 2003; 59: 187
    • 11b Hirose D, Taniguchi T. Beilstein J. Org. Chem. 2013; 9: 1713
    • 12a Walling CR, Clark T. J. Am. Chem. Soc. 1974; 96: 4530
    • 12b Martín A, Salazar JA, Suárez E. J. Org. Chem. 1996; 61: 3999
    • 12c Tsui E, Wang H, Knowles RR. Chem. Sci. 2020; 11: 11124
    • 13a Beckwith AL. J, Hay BP. J. Am. Chem. Soc. 1988; 110: 4415
    • 13b Hartung J, Gallou F. J. Org. Chem. 1995; 60: 6706
    • 14a Kim S, Lee TA, Song Y. Synlett 1998; 471
    • 14b Zhu H, Wickenden JG, Campbell NE, Leung JC. T, Johnson KM, Sammis GM. Org. Lett. 2009; 11: 2019
    • 14c Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
    • 14d Wang C, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
  • 15 Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew. Chem. Int. Ed. 2017; 57: 1640
  • 16 Cao Z, Zhang H, Wu X, Li Y, Zhu C. Org. Chem. Front. 2021; 8: 6395
    • 17a Urry WH, Kharasch MS. J. Am. Chem. Soc. 1944; 66: 1438
    • 17b Liu X, Xiong F, Huang X, Xu L, Li P, Wu X. Angew. Chem. Int. Ed. 2013; 52: 6962
    • 17c Chen ZM, Zhang XM, Tu YQ. Chem. Soc. Rev. 2015; 44: 5220
    • 17d Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
    • 17e Wu X, Zhu C. Acc. Chem. Res. 2020; 53: 1620
    • 17f Wu X, Ma Z, Feng T, Zhu C. Chem. Soc. Rev. 2021; 50: 11577
  • 18 Wu Z, Ren R, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 10821
  • 19 Wu Z, Wang D, Liu Y, Huan L, Zhu C. J. Am. Chem. Soc. 2017; 139: 1388
  • 20 Zhang H, Kou L, Chen D, Ji M, Bao X, Wu X, Zhu C. Org. Lett. 2020; 22: 5947
  • 22 Yu J, Wang D, Xu Y, Wu Z, Zhu C. Adv. Synth. Catal. 2018; 360: 744
  • 23 Chen D, Wu Z, Yao Y, Zhu C. Org. Chem. Front. 2018; 5: 2370
  • 24 Zhang H, Wu X, Zhao Q, Zhu C. Chem. Asian J. 2018; 13: 2453
  • 25 Tang N, Yang S, Wu X, Zhu C. Tetrahedron 2019; 75: 1639
    • 26a Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 631
    • 26b Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 635
    • 26c Speckamp WN, Köhler JJ. J. Chem. Soc., Chem. Commun. 1978; 166
    • 26d Köhler HJ, Speckamp WN. J. Chem. Soc., Chem. Commun. 1980; 142
    • 26e Motherwell WB, Pennell AM. K. J. Chem. Soc., Chem. Commun. 1991; 877
    • 26f da Mata ML. E. N, Motherwell WB, Ujjainwalla F. Tetrahedron Lett. 1997; 38: 137
    • 26g da Mata ML. E. N, Motherwell WB, Ujjaainwalla F. Tetrahedron Lett. 1997; 38: 141
  • 27 Yu J, Wu Z, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 17156
  • 28 Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 8195
  • 29 Niu T, Liu J, Wu X, Zhu C. Chin. J. Chem. 2020; 38: 803
    • 30a Michael JP. Nat. Prod. Rep. 1999; 16: 675
    • 30b Kalinin AA, Mamedov VA. Chem. Heterocycl. Compd. 2011; 46: 1423
    • 30c Zhang L, Peng X, Damu GL. V, Geng R, Zhou C.-H. Med. Res. Rev. 2014; 34: 340
    • 30d Matveeva MD, Purgatorio R, Voskressensky LG, Altomare CD. Future Med. Chem. 2019; 11: 2735
    • 31a Yuan B, He R, Shen W, Li M. Tetrahedron 2017; 73: 6092
    • 31b Dohmen C, Ihmels H, Kreienmeier R, Patrick BO. Chem. Commun. 2019; 55: 11071
    • 31c Yuan B, Tang Z, Lin Y, Wang G, Fang L, Guo X, Zhao Y, Xie X, Chen J, He R. New J. Chem. 2019; 43: 19149
    • 31d Oh KH, Kim SM, Park SY, Park JK. Org. Lett. 2016; 18: 2204
    • 32a Fang X, Wu Y, Deng J, Wang S. Tetrahedron 2004; 60: 5487
    • 32b Liu R, Cai Z, Lu C, Ye S, Xiang B, Gao J, Jia Y. Org. Chem. Front. 2015; 2: 226
    • 32c Allguer DS, Mayer P, Mayr H. J. Am. Chem. Soc. 2013; 135: 15216
    • 32d Wang DC, Xie MS, Guo HM, Qu GR, Zhang MC, You SL. Angew. Chem. Int. Ed. 2016; 55: 14111
    • 32e Nassiri M, Milani FJ, Hassankhani A. J. Heterocycl. Chem. 2015; 52: 1162
    • 33a Kelin AV, Sromek AW, Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074
    • 33b Hardin AR, Sarpong R. Org. Lett. 2007; 9: 4547
    • 33c Shi Y, Gevorgyan V. Chem. Commun. 2015; 51: 17166
    • 33d Zhou Y, Zhou L, Jesikiewicz LT, Liu P, Buchwald SL. J. Am. Chem. Soc. 2020; 142: 9908
    • 33e Chen G, Liu H, Li S, Tang Y, Lu P, Xu K, Zhang Y. Org. Lett. 2017; 19: 1792
    • 33f Meng X, Liao P, Liu J, Bi X. Chem. Commun. 2014; 50: 11837
    • 34a Bai Y, Zeng J, Ma J, Gorityala BK, Liu XW. J. Comb. Chem. 2010; 12: 696
    • 34b Sun J, Wang F, Hu H, Wang X, Wu H, Liu Y. J. Org. Chem. 2014; 79: 3992
    • 34c Fan X, Wang Y, He Y, Zhang X. Eur. J. Org. Chem. 2014; 713
    • 34d Fang Y, He L, Pan W, Yang Y. Tetrahedron 2019; 75: 3767
  • 35 Zhang H, Wang M, Wu X, Zhu C. Angew. Chem. Int. Ed. 2020; 60: 371
  • 36 Ji M, Wang X, Liu J, Wu X, Zhu C. Sci. China Chem. 2021; 64: 1703
    • 37a Chang X, Zhang Q, Guo C. Org. Lett. 2019; 21: 10
    • 37b Xia Z.-H, Dai L, Gao Z.-H, Ye S. Chem. Commun. 2020; 56: 1525
    • 37c Tan F.-F, He X.-Y, Tian W.-F, Li Y. Nat. Commun. 2020; 11: 6126
    • 37d Lardy SW, Luong KC, Schmidt VA. Chem. Eur. J. 2019; 25: 15267
    • 37e Chen K, Schwarz J, Karl TA, Chatterjee A, König B. Chem. Commun. 2019; 55: 13144
  • 38 Ji M, Chang C, Wu X, Zhu C. Chem. Commun. 2021; 57: 9240