Endoscopic ultrasound and endoscopic submucosal dissection with a multitraction device for a colonic submucosal lesion

With the increasing number of screening colonoscopies performed, better bowel preparation, and advancements in endoscopic image quality, asymptomatic small lesions are detected more frequently. Where there is suspicion of a submucosal neuroendocrine tumor (NET), en bloc resection is advised [1] because complete resection allows for better histopathological characterization and, in low risk cases, no endoscopic follow-up.

We report here the case of a 59-year-old man referred to our endoscopy department for a small subepithelial lesion of the sigmoid colon. The differential diagnosis included a lipoma, NET, neurofibroma, or mesenchymal tumor, such as a gastrointestinal stromal tumor (GIST). The mucosa covering the subepithelial lesion was normal on white-light imaging and narrow-band imaging (Fig. 1). The initial superficial biopsy showed lymphoid structures with atypia. Endoscopic ultrasound (EUS) was performed. It showed a well-defined, hypoechogenic 7.2-mm lesion located in the submucosa (uT1). There were no suspect lymph...
nodes located in the nearby area (▶ Video 1). We decided to perform a diagnostic en bloc resection by endoscopic submucosal dissection (ESD). After the submucosal injection had been performed, a circumferential incision was made. A multitraction device [2] with two loops was used to better expose the submucosal layer and allow complete resection (Fig. 2 and Fig. 3). There were no complications after the procedure. Histology revealed complete resection of an isolated submucosal lymph node, harboring no cancerous cells. No particular follow-up was needed. To our knowledge, this is the first video case report showing the endoscopic characterization with EUS and ESD of a colonic submucosal lesion. This case illustrates the challenges of differentiating benign from potentially malignant small colonic submucosal lesions, and the advantages of performing an en bloc endoscopic resection by ESD with a traction strategy.