Synlett 2022; 33(10): 903-906
DOI: 10.1055/a-1741-8898
synpacts

Zwitterionic Metal Enolates or Equivalents: Generation and Capture

Linhong Zuo
,
Wusheng Guo


Abstract

Functionalized ketones and their derivatives are important building blocks in organic synthesis and materials chemistry. The development of novel methods for the chemo-, regio-, diastereo-, stereo-, and enantioselective synthesis of functionalized ketones and their derivatives is a continuing endeavor of organic chemists. Here, we highlight a new approach recently initiated and developed by our group for the synthesis of (enantioenriched) ketones and related derivatives that is based on zwitterionic metal enolate chemistry.

1 Introduction

2 Annulations through Zwitterionic Palladium Enolate Chemistry for the Synthesis of Functionalized Cyclic Ketones

3 Nucleophilic Capture of Zwitterionic Metal (Palladium or Copper) Enolates or Their Equivalents

4 Conclusion



Publication History

Received: 01 January 2022

Accepted after revision: 16 January 2022

Accepted Manuscript online:
16 January 2022

Article published online:
08 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. Wiley-Interscience; Hoboken: 2007
    • 1b Siegel H, Eggersdorfer M. Ketones. Ullmann’s Encyclopedia of Industrial Chemistry 2000. DOI: 10.1002/14356007.a15_077
    • 1c Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000
    • 2a Lee KY, Choi JH, Kim W, Yan X.-T, Shin H, Jeon JH, Sung SH. Planta Med. 2016; 82: 645
    • 2b Dörwald FZ. Lead Optimization for Medicinal Chemists: Pharmacokinetic Properties of Functional Groups and Organic Compounds. Wiley-VCH; Weinheim: 2012. Chap. 29, 138
    • 2c McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
    • 2d Imamura Y, Narumi R, Shimada H. J. Enzyme Inhib. Med. Chem. 2007; 22: 105
    • 2e Walter MW. Nat. Prod. Rep. 2002; 19: 278
    • 2f McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Betlach M, Ashley G. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 1846
    • 2g Kamat PV. Chem. Rev. 1993; 93: 267
    • 3a Corey EJ, Kim CU. J. Am. Chem. Soc. 1972; 94: 7586
    • 3b Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
    • 3c Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 3d Bowden K, Heilbron IM, Jones ER. H, Weedon BC. L. J. Chem. Soc. 1946; 39
    • 3e Djerassi C. Org. React. 1951; 6: 207
    • 3f Arterburn JB. Tetrahedron 2001; 57: 9765
    • 4a Ador E, Crafts JM. Ber. Dtsch. Chem. Ges. 1877; 10: 2173
    • 4b Calloway NO. Chem. Rev. 1935; 17: 327
    • 5a Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
    • 5b Khlestkin VK, Mazhukin DG. Curr. Org. Chem. 2003; 7: 967
    • 6a Sheffy FK, Godschalx JP, Stille JK. J. Am. Chem. Soc. 1984; 106: 4833
    • 6b Echavarren AM, Stille JK. J. Am. Chem. Soc. 1988; 110: 1557
    • 6c Miyaura N. Top. Curr. Chem. 2002; 219:  248
    • 7a Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176
    • 7b Liu G, Stahl SS. J. Am. Chem. Soc. 2006; 128: 7179
    • 7c Mitsudome T, Mizumoto K, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2010; 49: 1238
    • 8a Willis MC. Chem. Rev. 2010; 110: 725
    • 8b Coxon TJ, Fernández M, Barwick-Silk J, McKay AI, Britton LE, Weller A, Willis MC. J. Am. Chem. Soc. 2017; 139: 10142
    • 8c Davison RT, Kuker EL, Dong VM. Acc. Chem. Res. 2021; 54: 1236
    • 10a Ishii T, Kakeno Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3854
    • 10b Kakeno Y, Kusakabe M, Nagao K, Ohmiya H. ACS Catal. 2020; 10: 8524
    • 10c Song R, Chi YR. Angew. Chem. Int. Ed. 2019; 58:  8628
    • 11a Wright TB, Evans PA. Chem. Rev. 2021; 121: 9196
    • 11b Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
    • 11c Cano R, Zakarian A, McGlacken GP. Angew. Chem. Int. Ed. 2017; 56: 9278
  • 14 Yan B, Zuo L, Chang X, Liu T, Cui M, Liu Y, Sun H, Chen W, Guo W. Org. Lett. 2021; 23: 351
  • 15 Liu Y, He Y, Liu Y, Wei K, Guo W. Org. Chem. Front. 2021; 8: 7004
  • 16 Liu T, Fang Y, Zuo L, Yang Y, Liu Y, Chen W, Dang L, Guo W. Org. Chem. Front. 2021; 8: 1902
  • 17 Zuo L, Ma P, Liu T, Chen X, Lavroff RH, Chen W, Houk KN, Guo W. Org. Lett. 2021; 23: 7330
  • 18 Zuo L, Yang Y, Guo W. Org. Lett. 2021; 23: 2013
  • 19 Yang Y, Zuo L, Wei K, Guo W. Org. Lett. 2021; 23: 3195
  • 20 Guo W, Zuo L, Cui M, Yan B, Ni S. J. Am. Chem. Soc. 2021; 143: 7629
    • 21a Meltzer PC, Butler D, Deschamps JR, Madras BK. J. Med. Chem. 2006; 49: 1420
    • 21b Carroll FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolckenhauer SA, Decker AM, Landavazo A, McElroy KT, Navarro HA, Gatch MB, Forster MJ. J. Med. Chem. 2009; 52: 6768
    • 21c Allen LA. T, Raclea R.-C, Natho P, Parsons PJ. Org. Biomol. Chem. 2021; 19: 498