Submucosal tunneling cecetomy in a dog: is it applicable for appendectomy in human?

We hereby present the successful application of submucosal tunneling cecetomy on a 12-kg female Beagle dog to mimic appendectomy in human. The steps were as follows (Fig. 1. Video 1).

Step 1: mucosal incision – the colonic cavity was intensively washed with normal saline to avoid leakage of fecal contents; the mucosa opposite the ileocecal valve was chosen for mucosal incision; a 2-cm horizontal or oblique mucosal incision was created. Step 2: submucosal tunneling – a submucosal tunnel was created until intentional perforation of the muscularis propria, about 3 cm from the appendix; the distance of 3 cm provided critical working space and better visualization of the appendix. Step 3: dissection
of the appendix – the appendix was then dissected from the mesoappendix with electrocoagulation of mesentery vessels. Step 4: ligation of the appendix – the bottom of the appendix was ligated with an endoloop. Step 5: resection of the appendix – the appendix was resected using a snare; to prevent leakage, the stump was then secured with another endoloop. Step 6: retrieval and mucosal closure – the appendix was retrieved by a snare; after careful hemostasis, the mucosal incision site was closed using hemostatic clips. The procedure took 50 minutes, and the dog was sacrificed after the operation.

This novel technique combines elements from submucosal tunneling endoscopic resection (STER) [1,2] and endoscopic intraperitoneal subserosal dissection (EISD) [3], leading to clear advantages over direct resection of the appendix from the colonic cavity [4] through a full-thickness transcolonic route. The mucosal barrier in the STER technique decreases the risk of suture failure and related complications, while the distance from perforation to the appendix leads to direct view and decreased mobility of the appendix during dissection from the mesoappendix. With accumulated experience, this technique may be further expanded for appendectomy and other natural orifice transluminal endoscopic surgeries in human.

Endoscopy_UCTN_Code_TTT_1AQ_2AJ

Funding

Shanghai “Rising Stars of Medical Talent” Youth Development Program (Youth Medical Talents – Specialist Program SHWjR5(2021)-99
National Key R&D Program of China 2019YFC1315800
National Natural Science Foundation of China http://dx.doi.org/10.13039/5011000180982003074
Shanghai Municipal Science and Technology Committee 19441905200
Shanghai Municipal Education Committee 18CG07

Competing interests

The authors declare that they have no conflict of interest.

The authors

Xin-Yang Liu*, Wei-Feng Chen*, Jian-Wei Hu, Ping-Hong Zhou, Quan-Lin Li
Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China

Corresponding author

Quan-Lin Li, MD
Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
li.quanlin@zs-hospital.sh.cn

References


Bibliography

Endoscopy
DOI 10.1055/a-1740-3980
ISSN 0013-726X
published online 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

References


ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is an open access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online. Processing charges apply (currently EUR 375), discounts and waivers acc. to HINARI are available.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos

* Co-first authors