Synthesis 2022; 54(10): 2330-2339
DOI: 10.1055/a-1739-4793
short review

Photoinduced Organic Reactions by Employing Pyrene Catalysts

Akira Shiozuka
a   Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
,
Kohei Sekine
a   Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
b   Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
,
a   Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
b   Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
› Author Affiliations
This work was supported in part by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research (KAKENHI) (Grant Nos. JP 20H04824, and 21H01941), the Yamada Science Foundation, the Sumitomo Foundation, and the Shorai Foundation for Science and Technology.


Abstract

Pyrene is one of the most attractive polycyclic aromatic hydrocarbons (PAHs) in photochemistry. Based on their redox properties, pyrenes have potential as photosensitizers. In this review, we summarize recent developments in pyrene-catalyzed photoinduced organic reactions occurring via energy transfer or single-electron transfer based on the excited state of the pyrene.

1 Introduction

2 Photolysis Involving N–O Bond Cleavage or Decarboxylation

3 (Cyclo)addition Reactions with Styrenes

4 Transformations via Cleavage of C–F, C–I, C–S and C–N Bonds

5 Reactions Based on Sensitization-Initiated Electron Transfer (SenI­-ET)

6 Miscellaneous Transformations

7 Conclusion



Publication History

Received: 02 December 2021

Accepted after revision: 13 January 2022

Accepted Manuscript online:
13 January 2022

Article published online:
25 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Berlman IB. Handbook of Fluorescence Spectra of Aromatic Molecules. Academic Press; New York: 1971
    • 1b Nakajima A. Bull. Chem. Soc. Jpn. 1973; 46: 2602
    • 1c Kanamaru N, Bhattacharjee HR, Lim EC. Chem. Phys. Lett. 1974; 26: 174
    • 1d Winnik FM. Chem. Rev. 1993; 93: 587
    • 1e Figueira-Duarte TM, Müllen K. Chem. Rev. 2011; 111: 7260

      Selected reviews:
    • 2a Casas-Solvas JM, Howgego JD, Davis AP. Org. Biomol. Chem. 2014; 12: 212
    • 2b Feng X, Hu J.-Y, Redshaw C, Yamato T. Chem. Eur. J. 2016; 22: 11898
    • 2c Zych D. Molecules 2019; 24: 2551
    • 2d Zhang Y, Tan L, Shi J, Ji L. New J. Chem. 2021; 45: 14869
  • 3 Kinik FP, Ortega-Gunerrero A, Ongari D, Ireland CP, Smit B. Chem. Rev. Soc. 2021; 50: 3143
    • 4a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 4b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 5 Zhao W, Castellano FN. J. Phys. Chem. A 2006; 110: 11440
  • 6 Ghosh I, Bardagi JI, König B. Angew. Chem. Int. Ed. 2017; 56: 12822
  • 7 Watanabe H, Nakajima K, Ekuni K, Edagawa R, Akagi Y, Okuda Y, Wakamatsu K, Orita A. Synthesis 2021; 53: 2984
  • 8 Dumur F. Eur. Polym. J. 2020; 126: 109564
  • 9 Sakurai T, Inomata K, Ishikawa T, Inoue H, Hoshi T, Okubo J. Bull. Chem. Soc. Jpn. 1987; 60: 4099
  • 10 Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 11a Ikeda S, Murata S, Ishii K, Hamaguchi H. Chem. Lett. 1999; 28: 1009
    • 11b Ikeda S, Murata S, Ishii K, Hamaguchi H. Bull. Chem. Soc. Jpn. 2000; 73: 2783
    • 11c Ikeda S, Murata S. J. Photochem. Photobiol., A: Chem. 2002; 149: 121
    • 12a González-Béjar M, Bentama A, Miranda MA, Stiriba S.-E, Pérez-Prieto J. Org. Lett. 2007; 9: 2067
    • 12b Cuquerella MC, Amrani SE, Miranda MA, Pérez-Prieto J. J. Org. Chem. 2009; 74: 3232
  • 14 Hermann S, Sack D, Wagenknecht H.-A. Eur. J. Org. Chem. 2018; 2204
  • 15 Lu J, Khetrapal NS, Johnson JA, Zeng XC, Zhang J. J. Am. Chem. Soc. 2016; 138: 15805
  • 16 Senaweera SM, Singh A, Weaver JD. J. Am. Chem. Soc. 2014; 136: 3002
  • 17 Zhang T, Wang P, Gao Z, An Y, He C, Duan C. RSC Adv. 2018; 8: 32610
  • 18 Shiozuka A, Sekine K, Kuninobu Y. Org. Lett. 2021; 23: 4774
  • 19 Ghosh I, Shaikh RS, König B. Angew. Chem. Int. Ed. 2017; 56: 8544
  • 20 Kerzig C, Goez M. Chem. Sci. 2016; 7: 3862
  • 21 Marchini M, Bergamini G, Cozzi PG, Ceroni P, Balzani V. Angew. Chem. Int. Ed. 2017; 56: 12820
  • 22 Coles MS, Quach G, Beves JE, Moore EG. Angew. Chem. Int. Ed. 2020; 59: 9522
  • 23 Glaser F, Kerzig C, Wenger OS. Chem. Sci. 2021; 12: 9922
  • 24 Hasegawa E, Ishiyama K, Horaguchi T, Shimizu T. J. Org. Chem. 1991; 56: 1631
  • 25 Hasegawa E, Ishiyama K, Fujita T, Kato T, Abe T. J. Org. Chem. 1997; 62: 2396
    • 26a Hasegawa E, Yoneoka A, Suzuki K, Kato T, Kitazume T, Yanagi K. Tetrahedron 1999; 55: 12957
    • 26b Hasegawa E, Chiba N, Nakajima A, Suzuki K, Yoneoka A, Iwaya K. Synthesis 2001; 1248
    • 26c Hasegawa E, Hirose H, Sasaki K, Takizawa S, Seida T, Chiba N. Heterocycles 2009; 77: 1147
    • 27a Hasegawa E, Takizawa S, Iwaya K, Kurokawa M, Chiba N, Yamamichi K. Chem. Commun. 2002; 1966
    • 27b Hasegawa E, Chiba N, Takahashi T, Takizawa S, Kitayama T, Suzuki T. Chem. Lett. 2004; 33: 18
    • 27c Hasegawa E, Takizawa S, Seida T, Yamaguchi A, Yamaguchi N, Chiba N, Takahashi T, Ikeda H, Akiyama K. Tetrahedron 2006; 62: 6581
  • 28 Fukuzumi S, Yuasa J, Satoh N, Suenobu T. J. Am. Chem. Soc. 2004; 126: 7585