A Homocoupling Approach to the Key Dione of CyMe₄-BTPhen – Vital Ligands for Nuclear Clean-Up by the SANEX Process

Thomas M. Trunks
Jasraj Singh Babra
James Westwood
Christopher D. Smith*

Department of Chemistry, University of Reading, Pepper Lane, Reading, RG6 6DX, UK
c.d.smith@reading.ac.uk

Abstract
CyMe₄-BTPhen and CyMe₄-BTBP are the principal ligand systems used in Europe for the separation of actinides from lanthanides as a part of the SANEX process for nuclear recycling and reprocessing. We present a new approach to the synthesis of the CyMe₄ fragment beginning from readily available hydroxy pivalic acid. It features a cobalt-catalysed homocoupling of a neopentyl bromide to provide the key bis-ester precursor, thereby avoiding the requirement for technically challenging low-temperature LDA-mediated aldol chemistries.

Key words homocoupling, catalysis, nuclear clean-up, elemental separations, SANEX process, accident tolerant fuel

Within the nuclear industry, the containment, separation, recycling, and long-term storage of radiotoxic waste is of huge importance.¹ The PUREX process separates plutonium and uranium for reuse as fuel but the remaining actinides can be transmuted by neutron fission process. This lanthanide-actinide separation is challenging low-temperature LDA-mediated aldol chemistries.

Whilst many modifications have been made to the ‘northern’ bipyridyl sector,¹⁶–¹⁸ alterations to the ‘southern’ triazine portion are synthetically more difficult – requiring the synthesis and subsequent condensation of the corresponding hydrazonamide 2 and CyMe₄-dione 3. The unusual gem-dimethyl groups are required for the protection of the pseudo-benzylic position from hydrolytic degradation caused by the preponderance of hydroxy radicals in the nuclear environment.¹⁹ α-Diketones are a difficult functional group to synthesize but in our hands the acyloin cyclisation and bromine-induced oxidation (Scheme 1, bottom) have proven reliable.⁹ We have previously synthesized bisester 4a by alkylation of ethyl isobutyrate with bistosylate 5 (Scheme 1, bottom). Although yields of up to 69% are achievable, the reaction requires substantial quantities of pyrophoric n-BuLi, reaction temperatures of ~20 °C, and a final technically challenging vacuum distillation step.

With our laboratory’s continued need for larger quantities of dione 3, we desired a more scalable synthetic strategy for the synthesis of bisester 4a. In devising a new approach to the CyMe₄-dione 3 we noted the symmetric nature of bisester 4 (Scheme 2). We believed that a metal-catalysed homocoupling reaction of 6 would provide access to this problematic compound and bromoster 6 has previously been synthesized from inexpensive hydroxy pivalic acid 7.²⁰,²¹

The bromination of hydroxy pivalic acid (Scheme 3) was very effective despite its neopentyl nature, providing bromo acid 8 in 87%. An Sₐ₁ pathway is unlikely due to the unfavoured requirement of a primary cation, whilst an Sₐ₂ mechanism is also unlikely due to the aqueous solvent and the neopentyl system.²² We assume the effectiveness of this reaction is due to neighbouring group participation-aided formation of an intermediate β-lactone 9,²³,²⁴ further aided by the Thorpe–Ingold effect of the gem-dimethyl substitu-
ents. Similar β-lactone intermediates have been isolated before, and when treated with HBr, produced the corresponding alkyl bromo acids. The geometry of this strained intermediate allows the bromide in the substitution reaction to approach more easily. The second step, a Fischer esterification, provided the ethyl ester in 83% yield and the methyl analogue in 87%.

We then looked into the sp3–sp3 homocoupling step and identified cobalt27 and nickel-based catalytic systems as potential options. We used commercially available ethyl 3-bromopropanoate (10) as a less-hindered model system to practice our technique. The cobalt procedure27 provided bisester in 66% yield (Scheme 4). We made a minor modification to the Goldup/Leigh Ni system28 – using TPTZ (12) as ligand instead of terpyridine. It is five times cheaper, presumably due to its usage as a reagent for iron analysis, and this protocol delivered in 81% yield.

However, when we switched to the required neopentyl system 4b (Scheme 5), our modified Ni catalyst provided no product at ambient temperature, 80 °C nor with added n-Bu4NI. We observed full consumption of the starting material but no product and suspect hydrodehalogenation followed by evaporative loss of methyl pivalate during isolation. Fortunately, the Co/Mn method allowed bisesters and to be isolated in 68% and 66%, respectively, on a multigram scale (Scheme 5). This was achieved by ensuring the Mn was activated by sonication and TFA before use.
final two steps of acyloin cyclisation using sodium metal and oxidation progressed smoothly provided multigram quantities of diketone 3 – the key intermediate for the synthesis of CyMe₄-BTPhen (1).³⁹

In conclusion, we have devised a new metal-catalysed homocoupling route to the important bisester building block 4 towards the CyMe₄-dione 3. The starting material, hydroxy pivalic acid (7) is readily available and the three-step route is eminently scalable, technically robust (developed mainly by an undergraduate), and the raw materials are roughly half the cost of the former route (see the Supporting Information). This procedure removes the need for pyrophoric reagents or cryogenic conditions on scale. More importantly, from our laboratory’s viewpoint, the challenging vacuum distillation is no longer required. This novel homocoupling of a neopentyl bromide offers a fresh approach for the synthesis of cyclic α-diketones, which could be further developed using suitable sp³–sp³ Negishi cross-couplings.³⁰ An additional advance is the use of TPTZ as an effective and cheaper alternative to terpyridine for the Ni-based homocoupling system.

Conflict of Interest
The authors declare no conflict of interest.

Funding Information
The work was supported by a grant of the Engineering and Physical Sciences Research Council (EPSRC) (EP/S011935/1, ATLANTIC: Accident ToLerANT fuels In reCycling). J.W. was supported by a grant of the Engineering and Physical Sciences Research Council (EPSRC) (EP/R014833/1, Asymmetric Catalytic Photochemistry). We would like to acknowledge the continued support and mentorship of Professor Laurence M. Harwood. The ATLANTIC consortium (www.atlanticconsortium.org) is thanked for excellent discussions between disparate experts in the nuclear field.

Acknowledgment
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1737-8610.

References