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ABSTRACT

Background Non-small cell lung cancer (NSCLC) is the lead-

ing cause of cancer-related deaths. The development of

therapies targeting molecular alterations has significantly

improved the treatment of NSCLC patients. To identify these

targets, tumor phenotyping is required, with tissue biopsies

and molecular pathology being the gold standard. Some

patients do not respond to targeted therapies and many

patients suffer from tumor recurrence, which can in part be

explained by tumor heterogeneity. This points out the need

for new biomarkers allowing for better tumor phenotyping

and monitoring during treatment to assess patient outcome.

Method The contents of this review are based on a literature

search conducted using the PubMed database in March 2021

and the authors’ experience.

Results and Conclusion The use of radiomics and artificial

intelligence-based approaches allows for the identification of

imaging biomarkers in NSCLC patients for tumor phenotyp-

ing. Several studies show promising results for models pre-

dicting molecular alterations, with the best results being

achieved by combining structural and functional imaging.

Radiomics could help solve the pressing clinical need for

assessing and predicting therapy response. To reach this

goal, advanced tumor phenotyping, considering tumor

heterogeneity, is required. This could be achieved by integrat-

ing structural and functional imaging biomarkers with clinical

data sources, such as liquid biopsy results. However, to allow

for radiomics-based approaches to be introduced into clinical

practice, further standardization using large, multi-center

datasets is required.

Key points:
▪ Some NSCLC patients do not benefit from targeted thera-

pies, and many patients suffer from tumor recurrence,

pointing out the need for new biomarkers allowing for bet-

ter tumor phenotyping and monitoring during treatment.

▪ The use of radiomics-based approaches allows for the

identification of imaging biomarkers in NSCLC patients for

tumor phenotyping.

▪ Amulti-omics approach integrating not only structural and

functional imaging biomarkers but also clinical data sour-

ces, such as liquid biopsy results, could further enhance

the prediction and assessment of therapy response.
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Use for Therapy Response Prediction and Monitoring.

Fortschr Röntgenstr 2022; 194: 720–727

ZUSAMMENFASSUNG

Hintergrund Nichtkleinzelliger Lungenkrebs ist die häufigste

Krebstodesursache. Durch die Entwicklung neuer gezielter

Therapien konnten erhebliche Fortschritte in der Behandlung

von Lungenkrebspatienten erzielt werden. Gewebebiopsien

und molekulare Pathologie sind der Goldstandard zur Identifi-

kation der molekularen Therapieziele. Nicht alle Patienten

profitieren von diesen neuen Therapieformen und viele

Patienten leiden an Rezidiven, was z. T. durch die Tumorhete-

rogenität erklärt werden kann. Die Identifikation weiterer Bio-

marker ist nötig, um das Therapieansprechen besser beurtei-

len zu können.

Methode Der Inhalt dieser Übersichtarbeit basiert auf einer

Literaturrecherche in PubMed aus dem März 2021 und den

Erfahrungen der Autoren.

Ergebnisse und Schlussfolgerung Mithilfe von Radiomics

und maschinellem Lernen können Bildgebungsbiomarker zur

Tumorphänotypisierung bei Lungenkrebspatienten identifi-

ziert werden. Einige Studien zeigen gute Ergebnisse der Prä-

diktionsmodelle für das Vorliegen verschiedener molekularer

Alterationen, wobei die Verwendung von struktureller und

funktionaler Bildgebung die besten Ergebnisse liefert. Durch

die Integration struktureller und funktionaler Bildgebung mit

weiteren klinischen Datenquellen, wie den Ergebnissen von

liquid biopsies, könnte Radiomics ein Lösungsansatz für die

klinische Notwendigkeit zur besseren Beurteilung des Thera-

pieverlaufs sein. Damit Radiomics-Ansätze Einzug in die

klinische Routine halten können, sind weitere Studien mit

großen, multizentrischen Datensätzen zur Validierung nötig.

Kernaussagen:
▪ Nicht alle Patienten mit nichtkleinzelligem Lungenkrebs

profitieren von gezielten Therapien und viele Patienten

entwickeln Rezidive, was die Notwendigkeit der Identifika-

tion neuer Biomarker zur besseren Phänotypisierung und

Verlaufskontrolle von Tumoren aufzeigt.

▪ Mithilfe von Radiomics können Bildgebungsbiomarker zur

Tumorphänotypisierung bei Lungenkrebspatienten identi-

fiziert werden.

▪ Durch die Integration struktureller und funktionaler Bild-

gebung mit weiteren klinischen Datenquellen, wie den

Ergebnissen von liquid biopsies, könnte Radiomics ein Lö-

sungsansatz für die klinische Notwendigkeit zur besseren

Beurteilung des Therapieverlaufs sein.

Introduction

The field of radiology has undergone substantial changes due to
technological advances with the introduction of computed
tomography (CT) and magnetic resonance imaging (MRI) and
their subsequent steady improvement, which accounts for the
major changes in diagnostic medicine and treatment response
measures in the field of oncology. The next step in the innovation
of radiology will be mainly due to the advances made in the appli-
cation of computer-assisted analysis of imaging and clinical data,
especially radiomics and artificial intelligence. Radiological ima-
ging plays a major role in the clinical decision-making process in
oncology, and computer-assisted image analysis promises to offer
obvious improvement to this process where the human expert
fails to comprehend the complex information beyond tumor size
and contrast behavior.

Radiological imaging in lung cancer patients is one of the fields
in oncology in which such applications are eagerly awaited. Lung
cancer is the second most common cancer type globally and the
leading cause of cancer deaths, with non-small cell lung cancer
(NSCLC) being the predominant subtype, accounting for approxi-
mately 85 % of cases with approximately 40% being classified as
adenocarcinomas [1, 2]. Early detection of malignant pulmonary
lesions is highly relevant, as the 5-year survival rate of patients
treated with early stage lung cancer is 57%, while it is only about
5% in patients with generalized disease [3]. Due to limited symp-
toms in early stages, lung cancer is often diagnosed in late stages
[4]. In recent years the identification of new molecular and geno-
mic biomarkers has provided new targets for therapeutic approa-

ches in patients with late-stage non-small cell lung cancer
(NSCLC), thereby increasing overall survival [5, 6]. Important
examples include mutations of the epidermal growth factor recep-
tor (EGFR) or anaplastic lymphoma kinase (ALK) rearrangements,
which can be found in 15% and 2% of non-small cell lung cancer
patients, respectively [7, 8]. For both alterations a number of tar-
geted therapeutics are already being used in the clinical routine
(e. g., the tyrosine kinase inhibitors erlotinib, gefitinib, and afati-
nib for EGFR mutations [9, 10] and crizotinib, alectinib, and briga-
tinib for ALK translocations [11, 12]). The histological subtypes of
lung cancer and molecular alterations in the biggest histological
subgroup, i. e., adenocarcinomas, are summarized in ▶ Fig. 1.

To date, the identification of the aforesaid mutations usually
requires the invasive collection of tissue samples, e. g., by trans-
bronchial biopsy or CT-guided biopsy of the primary tumor or its
metastases. Invasive procedures carry the risk of complications
and consequently not all patients can undergo these procedures
due to comorbidities. In some cases, tissue samples might be
inadequate or in the case of oncological progression re-biopsy
cannot always be performed. To overcome these hurdles, new
approaches are being investigated to assess and monitor tumor
mutation status, for example the examination of circulating cell-
free nucleic acids in the blood stream, usually referred to as liquid
biopsy [13], or the use of surrogate markers as derived, e. g., from
imaging through computer-assisted analysis of radiological ima-
ging or clinical data. Even though the identification of the
described molecular biomarkers as therapy targets has had a
considerable impact on patient outcome, not all patients with
corresponding molecular alterations benefit from targeted thera-
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pies and in many cases tumor recurrence is observed over time,
highlighting the need for close monitoring of therapy response
as part of the diagnostic process in lung cancer patients. In this
review we give a short introduction to the field of radiomics in
the context of identification of imaging biomarkers in lung cancer
and provide an outlook on how radiomics could impact the
management and treatment of lung cancer patients in the future.

Basic Principles of Radiomics for the Identification of
Imaging Biomarkers

In oncologic radiology the evaluation of imaging traditionally
involves a mainly qualitative approach by the human reader, known
as semantic [14]. This refers to cross-sectional imaging, both CT and
MRI. The tumor phenotype can only be partially detected by the
human eye, also depending on factors like the experience of the
radiologist. Quantitative analysis in this context is often limited to
one-dimensional measurements of tumor manifestations with
follow-up examinations being evaluated according to RECIST
(response evaluation of criteria for solid tumors) guidelines [15]. This
approach potentially fails to recognize a large part of the informa-
tion available from imaging, as this information might not be easily
accessible to the human eye. ▶ Fig. 2 shows three examples of
pulmonary adenocarcinomas with a different tumor mutation
status, showing no obvious features that make it possible to diffe-
rentiate them visually.

An increasing number of studies show that radiomics-based
image analysis allows for the extraction of otherwise missed

features and their quantitative analysis [16], which in turn could
improve diagnosis and might lead to a better prediction of tumor
response to therapy [17]. The term radiomics refers to the
concept of large-scale analysis of radiological images and the
association with biological markers or clinical endpoints using
mathematical and machine learning methods [18]. The main
steps of any radiomics workflow follow the same principles and
can be summarized as shown in ▶ Fig. 3.

Image acquisition is the starting point in any radiological study.
Differences in imaged organ systems and image acquisition tech-
niques can have a considerable impact on the reproducibility of
radiomics models as scanners, scanning protocols, reconstruction
algorithms, etc. can vary significantly in large data sets [19]. As
most radiomic analyses are conducted retrospectively, this factor
must be considered and needs to be addressed by techniques like
feature normalization or harmonization [20, 21]. Otherwise, the
resulting model might be limited by trained technical pre-set-
tings. Following image acquisition, the region of interest (ROI)
needs to be defined and segmented for further analysis. This
may not only include the tumor itself but also its close pulmonary
vicinity to study the interaction with surrounding tissues. Semi-
automated and fully automated segmentation techniques have
improved in recent years, speeding up the otherwise time-con-
suming work of manual segmentation by experts [22].

Radiomic features are consequently calculated from the seg-
mented structures. Many different features have been described,
some being highly standardized while other studies also include
handcrafted features. Authors take different approaches in the

▶ Fig. 1 Overview of histological subtypes of lung cancer (left) and molecular alterations in the biggest histological subgroup of NSCLC,
adenocarcinomas (right) [1].

▶ Abb.1 Übersicht der histologischen Subtypen von Lungenkrebs (links) und der molekularen Alterationen der größten Subgruppe,
dem Adenokarzinom (rechts) [1].

722 Kroschke J et al. Imaging Biomarkers in… Fortschr Röntgenstr 2022; 194: 720–727 | © 2022. Thieme. All rights reserved.

Review

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



classification of features. Conventionally, four main groups can be
distinguished: tumor intensity-based features (also called first
order features as first-order statistics are used for description),
shape features, texture features and wavelet features. Tumor
intensity-based features are histogram-based quantifications of
all tumor voxel intensity values. Shape features describe the geo-
metric properties of the region of interest. Texture features are

used to quantify the heterogeneity of the region of interest in
terms of grayscale values. For example, a homogeneous structure
or tissue would show similar gray values while heterogenous
structures would exhibit high differences in gray levels. Examples
for this feature class include the Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), or Gray Level Size
Zone Matrix (GLSZM). Lastly, wavelet features are calculated from

▶ Fig. 3 Steps of radiomics workflows: After image acquisition, target structures are either manually or (semi-)automatically segmented for the
feature extraction and selection process, which is succeeded by analysis of the association of radiomics features with other endpoints to establish a
prediction mode, followed by performance testing of the established model.

▶ Abb.3 Schritte eines Radiomics-Arbeitsflusses: Nach der Bildakquisition werden die Zielstrukturen für den Extraktions- und Selektionsprozess
der Bildeigenschaften manuell oder (semi-)automatisch segmentiert, gefolgt von der Analyse der Assoziation der erhobenen Bildeigenschaften mit
definierten Endpunkten zur Entwicklung eines Modells, welches im letzten Schritt getestet werden muss.

▶ Fig. 2 Examples of pulmonary adenocarcinomas in soft tissue (a, c, e) and lung tissue window (b, d, f): CT examinations of three different patients
at the time of initial diagnosis. Patients later underwent tissue biopsies with molecular pathological analysis detecting no tumor mutation (a, b), EGFR
mutation (c, d), and ALK rearrangement (e, f).

▶ Abb.2 Beispiele pulmonaler Adenokarzinome im Weichteil- (a, c, e) und Lungenfenster (b, d, f): CT-Untersuchungen von 3 unterschiedlichen
Patienten zum Zeitpunkt der Erstdiagnose, bei denen später eine Biopsie mit anschließender Molekularpathologie durchgeführt wurde. Es zeigten
sich keine Mutation (a, b), eine EGFR-Mutation (c, d) und eine ALK-Translokation (e, f).
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wavelet decompositions of the original imaging [16, 23, 24]. A
wavelet transformation is a form of mathematical filter that
results in decompositions according to the scale and orientation
of the initial image. ▶ Table 1 gives an overview of these feature
classes and provides relevant examples for each class.

Not all resulting features are equally useful for statistical corre-
lation with clinical endpoints, as there may be redundancies or
only a weak association with the classification task [18]. There-
fore, to identify which radiomic features should be used as ima-
ging biomarkers for the aimed task, feature selection has to be
performed to reduce the dimensionality of the feature space
[25]. Multiple studies have compared different feature selection
approaches and have thereby shown that feature selection is criti-
cal for the development of accurate radiomics models [23, 26,
27]. The last but most challenging step is the development of a
model that integrates radiomics data with clinical data to estab-
lish models for tumor classification or therapy prediction. This is
usually achieved by a regression model for scalar problems (e. g.,
survival) or a classification model and can be greatly enhanced by
machine learning techniques [28].

Addressing Limitations of Radiomics

A major issue that remains to be solved in the field of radiomics is
the reproducibility of results. Many radiomics studies have only
used the split-sample approach, meaning that monocentric data-
sets are split into training and validation datasets before feature
extraction [29]. Such models usually show low performance
when applied to an independent cohort [30]. A lack of harmoniza-
tion of data acquisition is still an important drawback for high-
throughput data methodologies such as radiomics, since different
CT scanner manufacturers, scanning protocols, contrast media,
and image reconstruction methods impact image features. Fur-
ther validation and generalization of results requires large, multi-
centric datasets that incorporate imaging data and clinical data of
good quality to allow for the creation of robust models [30].
Moreover, Ninatti et al. found in their recent review of radiomics
approaches in lung cancer that no reliable radiomic features could
be identified between different studies [29]. To allow for radio-
mics approaches to be introduced into clinical practice, further
standardization is still required.

Radiogenomics in lung cancer: Predicting the tumor
genotype

As mentioned, therapy of advanced non-small cell lung cancer has
changed considerably due to the identification of numerous
molecular and genomic markers, making molecular pathological
testing part of the clinical routine for NSCLC patients, with muta-
tions in the EGF-receptor, tyrosine kinase receptor ALK, and the
oncogenes ROS1 and BRAF usually being investigated since
potent therapeutics for these targets are in use [31]. In addition,
programmed-death-1 (PD-1)/programmed-death ligand (PD-L1)
inhibitors are another important group of novel targeted thera-
peutics for which testing is routinely performed [31]. These
immune checkpoint inhibitors have had a significant impact on
patient outcome if no other targetable molecular alteration can
be found.

Identification of these biomarkers using radiomics approaches
has proven to be promising as it could reduce the need for biop-
sies or could help track changes in the tumor mutation status over
time without the need for re-biopsy. The integration of medical
imaging data derived by radiomics and genomic data is often
referred to as radiogenomics [32]. The number of publications
regarding the identification of these relevant biomarkers in NSCLC
patients is increasing (▶ Table 2), and several reviews have
focused on the comparison of these studies, usually comparing
the reliability of the developed models by measuring the area
under the curve (AUC). Prediction of EGFR status has seen the
highest number of publications in accordance with the relatively
high prevalence of mutations in NSCLC patients (▶ Table 2) and
recent papers have shown good results, with the highest AUC
values achieved by combinations of radiomics data, visual quali-
tative CT features, AI approaches using convolutional neural
networks, positron emission tomography parameters, and clini-
cal/pathological features [29]. Results in the validation cohorts in
these studies ranged from AUCs of 0.73 [33] to 0.95 [34]
(▶ Table 3).

Only a small number of studies investigating ALK rearrange-
ments have been published and even fewer for PD-L1 expression
and the rarer ROS1 and BRAF mutations. These studies showed
promising results, for example Yamamoto et al. showed a sensiti-
vity of 83.3 %, a specificity of 77.9 %, and an accuracy of 78.8 % for

▶ Table 1 Radiomics feature classes and selected examples.

▶ Tab. 1 Klassen der „Radiomics“-Eigenschaften und ausgewählte Beispiele.

Feature class Description Examples

Tumor-intensity based features
(first order statistics)

Histogram-based quantifications of all voxel
intensity values of ROI

Minimum, maximum, mean, median, range, etc.

Shape features Used to describe geometric properties of ROI Volume, surface area, sphericity, maximum diameter, elongation, etc.

Texture features Used to quantify heterogeneity of ROI Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length
Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), etc.

Wavelet features Calculated from wavelet decompositions of
original imaging

Fourier, Gabor, Haar wavelet transforms
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the prediction model of ALK aberrations [35], and Jiang et al.
developed a model with an AUC of 0.97 and 0.91 for the predic-
tion of PD-L1 expression rates of ≥ 1 % and ≥ 50 %, respectively
[36]. These positive outcomes make radiogenomics a promising
area for further research since the individual prediction of tumor
mutation status solely based on imaging has not been achieved
and is not ready for routine use in patients.

Multi-omics approaches for response prediction in
lung cancer and therapy monitoring

A deeper understanding of the tumor biology of lung cancer is
emerging as increasing attention is given to the heterogeneity
and microenvironment of tumors. Even though the identification
of the described molecular biomarkers as therapy targets has had
a considerable impact on patient outcome, not all patients with
corresponding molecular alterations benefit from targeted thera-
pies. Moreover, patients initially benefitting from these therapies
often experience recurrence or (hyper-)progression due to
acquired therapy resistance of the tumors [37, 38]. Neoplastic
transformation results from the accumulation of genetic and
epigenetic alterations, leading to a variation of different genetic
alterations within the resulting macroscopic tumor. In the exam-
ple of lung adenocarcinomas, two or more histopathological sub-
types have been described with regions with different degrees of
differentiation, proliferation, vascularity, inflammation, and inva-
siveness [39, 40]. Other factors contributing to the heterogeneity
of tumors are epigenetic alterations and the tumor microenviron-
ment [41]. The resulting manifestation of tumor heterogeneity
within tumors, in the microenvironment, and between patients
has been found to contribute to differences in survival and tumor
recurrence as cells that are not susceptible to the administered
therapy can replace cells that have been successfully destroyed
[42]. Additionally, the accumulation of mutations is a dynamic
process that does not stop at the time of initial diagnosis but
may lead to resistance mechanisms being acquired during the
course of therapy [43]. In clinical practice, this leads to the need
for tissue re-biopsy at the time of tumor progression or recur-
rence from progressing lesions.

▶ Table 2 Number of publications in the field of radiogenomics in
NSCLC.

▶ Tab. 2 Anzahl der Publikationen im Bereich der „Radiogenomics“
bei nichtkleinzelligem Lungenkrebs.

Molecular marker Frequency in
patients [3, 10]

Number
of publications

EGFR
▪ Overall
▪ Exon 19 deletion
▪ Exon 21 L858R

mutation
▪ Others

10–20%
~ 45%
~ 40%
~ 15%

20+

ALK 2–5% 5

ROS1 1–4% 1

BRAF ~ 2% 0

PD-L1 expression
▪ < 1%
▪ 1–49%
▪ ≥ 50%

30–40%
30–40%
~ 30%

2

▶ Table 3 Summary of selected studies presented in this review.

▶ Tab. 3 Zusammenfassung der Ergebnisse der präsentierten Studien.

Authors Approach Modality Results (in validation cohorts)

Zhao et al. [33] Prediction model for EGFR gene mutation status in
NSCLC patients

CT AUC=0.73

Jiang et al. [34] Prediction model for EGFR gene mutation status in
NSCLC patients

PET/CT AUC=0.95

Yamamoto et al. [35] Model for prediction of ALK aberrations CT Sensitivity 83.3%, specificity 77.9%, accuracy
78.8%

Jiang et al. Model for prediction of PD-L1 expression rates of ≥1%
or ≥ 50%

PET/CT ≥1%: AUC= 0.97
≥50%: AUC= 0.91

Xu et al. [45] Model to stratify patients into low and high mortality-
risk groups strongly correlating with 2-year overall
survival

CT AUC=0.74

Mu et al. [46] Response prediction of advanced NSCLC patients to
immunotherapy

PET/CT AUC=0.83 (retrospective validation)
AUC=0.81 (prospective validation)

Cucchiara et al. [49] Integrating liquid biopsy and radiomics to monitor
clonal heterogeneity in EGFR-positive NSCLC

CT
(liquid biopsy)

R2 = 0.447, p < 0.001
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Radiomics and artificial intelligence-based analysis might offer
a noninvasive alternative as it allows for the assessment of the
entire tumor volume and can be applied to every radiological
follow-up examination, and in theory to every tumor manifesta-
tion throughout the body. To further improve the success of
targeted therapies, it will be crucial to find better ways to take
tumor heterogeneity into account to predict therapy response
and monitor tumor phenotypes during therapy. Some studies
have already shown the feasibility of predicting tumor response
using radiomics approaches [44] (▶ Table 3). For example, Xu
et al. describe a model that predicts patient outcome by stratify-
ing patients into low and high mortality-risk groups that strongly
correlate with 2-year overall survival (HR = 6.16, 95 %CI
[2.17,17.44], p < 0.001), achieving an AUC of 0.74 (p < 0.05) for
their model [45].

In addition to structural radiomics approaches, functional ima-
ging can also be analyzed using machine-learning approaches.
Lung cancer patients receive 18FDG-PET/CT examinations in the
clinical routine to assess tumor glucose metabolism as a para-
meter for tumor activity. Studies have shown that PET-based
radiomics can predict clinical outcomes [30]. For example, Mu
et al. developed a model identifying NSCLC patients, who are
most likely to benefit from immunotherapy with AUC values of
0.86 (95%CI 0.79–0.94), 0.83 (95%CI 0.71–0.94), and 0.81 (95%
CI 0.68–0.92) in the training, retrospective test, and prospective
test cohorts, respectively [46].

Integration of structural and functional imaging biomarkers in
a multi-omics approach could lead to further improvement of
tumor phenotyping with the inclusion of formerly uncorrelated
data from new sources [47]. One such example of a new data
source is the quickly emerging field of liquid biopsies, i. e., peri-
pheral blood samples. In lung cancer, liquid biopsies offer the
possibility to longitudinally extract genetic information from
tumors without the need for tissue (re-)biopsy. The genetic infor-
mation is derived from tumor-specific cfDNA that originates from
perishing or circulating tumor cells, giving an overview of all
genetic alterations of the tumor [41], thus offering another way
to take tumor heterogeneity into account, potentially allowing
for therapy response prediction. Janke et al., for example, report
a highly significant marker panel indicating therapeutic response
(R2 = 0.78, R2 = 0.71, and R2 = 0.71) in patients with advanced non-
small cell lung cancer receiving chemotherapy or targeted thera-
pies [48]. Studies have already established multi-parametric
approaches in smaller data sets. Cucchiara et al. show that the
combination of radiomics analyses and liquid biopsy results can
be used to monitor mutation status in NSCLC patients over the
course of treatment with promising performance on predicting
the presence of EGFR mutation status (R2 = 0.447, p < 0.001) [49].

Conclusion

The use of radiomics in combination with artificial intelligence-
based approaches allows for the identification of novel imaging
biomarkers. In non-small cell lung cancer patients, radiogenomics
describes the combination of radiomic data with tumor genome
mutation status, which is a promising approach for the identifica-

tion of therapy targets, such as EGFR mutations, ALK rearrange-
ments, or PD-L1 expression rates, with several prediction models
showing encouraging results. Furthermore, radiomics could help
to solve the pressing clinical need for early assessment and predic-
tion of therapy response, as not all patients with corresponding
molecular alterations benefit from targeted therapies and in
many cases tumor recurrence is observed over time. To reach
this goal, advanced tumor phenotyping is required, which could
be achieved by integrating structural and functional imaging bio-
markers with clinical data sources, such as genomics approaches
using liquid biopsy results, in a multi-omics approach. However,
to allow radiomics- and artificial intelligence-based approaches
to be introduced into clinical practice, further standardization
using large, multi-center and multi-vendor datasets is required.
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