Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods
Kardiale Magnetresonanztomografie mit Late-Gadolinium-Enhancement: Vom Grundprinzip zu neuen Methoden

Authors
Robert J. Holtackers1,2,3, Tilman Emrich4,5,6, René M. Botnar3,7, M. Eline Kooi1,2, Joachim E. Wildberger1,2, K.-F. Kreitner4

Affiliations
1 Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
2 Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
3 School of Biomedical Engineering & Imaging Sciences, King’s College London, United Kingdom
4 Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany
5 German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
6 Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
7 Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile

Key words
cardiac, heart, tissue characterization, MR imaging

ABSTRACT
Background Late gadolinium enhancement (LGE) is a widely used cardiac magnetic resonance imaging (MRI) technique to diagnose a broad range of ischemic and non-ischemic cardiomyopathies. Since its development and validation against histology already more than two decades ago, the clinical utility of LGE and its span of applications have increased considerably.

Methods In this review we will present the basic concepts of LGE imaging and its diagnostic and prognostic value, elaborate on recent developments and emerging methods, and finally discuss future prospects.

Results Continuous developments in 3D imaging methods, motion correction techniques, water/fat-separated imaging, dark-blood methods, and scar quantification improved the performance and further expanded the clinical utility of LGE imaging.

Conclusion LGE imaging is the current noninvasive reference standard for the assessment of myocardial viability. Improvements in spatial resolution, scar-to-blood contrast, and water/fat-separated imaging further strengthened its position.

Key Points:
▪ LGE MRI is the reference standard for the noninvasive assessment of myocardial viability
▪ LGE MRI is used to diagnose a broad range of non-ischemic cardiomyopathies in everyday clinical practice.
▪ Improvements in spatial resolution and scar-to-blood contrast further strengthened its position
▪ Continuous developments improve its performance and further expand its clinical utility

Citation Format
Introduction

Late gadolinium enhancement (LGE), also known as delayed enhancement (DE) or late enhancement (LE), is a widely used cardiac magnetic resonance imaging (MRI) technique and the current noninvasive reference standard for the assessment of myocardial viability [1]. Since its initial validation against histology approximately two decades ago [2, 3], its ability to distinguish areas of myocardial infarction from normal myocardium has gained wide acceptance. Over the years, the clinical utility of LGE has broadened considerably, including the detection of non-ischemic enhancement patterns [4, 5], pre-procedural assessment of arrhythmogenic substrate [6, 7], and visualization of radiofrequency-induced ablation lesions [8, 9]. More recently, LGE emerged as a promising tool for guiding subsequent electrophysiology procedures to treat cardiac arrhythmias [10, 11]. Nowadays, LGE is used to diagnose a broad range of ischemic and non-ischemic cardiomyopathies in everyday clinical practice.

In this review, we not only discuss the basic concepts of LGE imaging and its diagnostic and prognostic value, but also elaborate on emerging methods in the field of LGE, including dark-blood techniques, high-resolution (isotropic) 3D imaging, water/fat-separated methods, motion correction techniques, and semi-automated scar quantification.

Basic LGE concepts

LGE imaging requires the use of a gadolinium-based contrast agent (GBCA) which is intravenously administered to the patient. GBCAs are routinely used in MRI examinations for their strong T₁-shortening effect and tissue dependent distribution within the body. Particularly for LGE MRI, the time required for the GBCA to reach the cardiac tissue compartments after injection plays a major role in the acquired image contrast. As various compartments within the myocardium have different wash-in and wash-out kinetics, the GBCA concentration in these individual compartments will constantly vary after contrast injection [12]. While the GBCA reaches the normal myocardium already soon after injection, areas of fibrosis are reached at a much slower rate (Fig. 1). A similar effect is observed for the clearance of the GBCA. While the GBCA is cleared quickly after reaching its peak concentration in the normal myocardium, it resides in areas of fibrosis for a much longer time.

Aside from the different wash-in and wash-out kinetics, the local distribution is of equal importance for LGE. The used GBCAs are extracellular and cannot cross the intact cell membranes of the normal myocardium, thereby limiting their distribution volume to the interstitial space. However, in patients with acute myocardial injury, the cell membranes of the affected myocytes have ruptured and the GBCA can now also access the ‘intracellular’ space, leading to an increased distribution volume [12]. Over time, scar tissue forms and the affected myocytes are replaced by a collagen matrix. As a result, the interstitial space is increased and thus also the distribution volume for GBCAs. Ultimately, both in patients with acute and chronic myocardial injury, the distribution volume for GBCAs is increased compared to that in healthy subjects. The combined effect of reduced wash-in/wash-out kinetics and the increased distribution volume leads to a delayed accumulation of the GBCA in areas of myocardial injury approximately ten minutes post-injection [13]. Because of the strong T₁-shortening effect of GBCAs, these areas of accumulation lead to a delayed hyperenhancement of the signal, hence the name “late enhancement” or “delayed enhancement”.

Standard LGE sequence

While the areas of myocardial injury experience a strong decrease in T₁ relaxation time due to prolonged GBCA accumulation, after approximately ten minutes most of the GBCA has already been cleared from the normal myocardium, resulting in a much longer T₁ relaxation time there [13]. In order to maximize contrast between the normal myocardium and areas of myocardial injury, a heavily T₁-weighted segmented inversion-recovery (IR) gradient-echo pulse sequence is used (Fig. 2) [3]. IR pulse sequences start with a non-selective 180-degree inversion radiofrequency (RF) pulse that inverts the longitudinal magnetization of all tissues. The IR pulse is followed by a time delay called the “inversion time” or simply TI. During this delay, the longitudinal magnetization of all tissues will recover to its equilibrium with a rate determined by the tissue-specific T₁ relaxation time. Finally, after the TI, a spoiled gradient-echo readout of approximately 100–150 ms is performed to acquire the IR-prepared MR signal.

A “Look-Locker” scan, also known as a TI scout scan, provides a series of low-resolution images with an increasing TI and is usually performed prior to LGE imaging to determine the desired TI (Fig. 3) [14]. Traditionally, the TI is set so that the longitudinal
magnetization of the normal myocardium is zero when the signal is acquired [15]. Nulling the normal myocardium will then lead to a black appearance on magnitude images, while the blood pool and areas of myocardial injury appear enhanced due to their shortened T_1 relaxation time.

As an alternative to a conventional IR sequence, it is possible to use a phase-sensitive inversion-recovery (PSIR) sequence that applies a 180 degrees inversion RF pulse only once every two heartbeats (Fig. 4). During every second heartbeat, a reference image is acquired using a low flip angle excitation (usually only 5 degrees). This reference image is used to determine the phase, and thus the sign, of the MR signals acquired every first heartbeat. PSIR is therefore able to distinguish positive from negative magnetization levels. Negative magnetization levels will be represented differently in the corrected real (or PSIR) image that is reconstructed: negative magnetization levels appear darkest, nulled magnetization levels appear mid-gray, and positive magnetization levels appear bright [16]. This is in contrast to conventional magnitude image reconstruction, where nulled magnetization levels appear darkest, and both negative and positive magnetization levels appear bright. When PSIR is used in combination with conventional myocardium-nulled LGE, the clinical observer may adjust window levels to further darken normal myocardial tissue, mimicking a magnitude image representation. In clinical practice, PSIR is recommended to make LGE image quality less sensitive to respiratory navigator. To overcome this challenge, the use of a navigator restore pulse that re-inverted the longitudinal signal in the liver immediately after the IR preparation pulse was proposed for respiratory motion correction.

Free-breathing 3 D methods

Currently used clinical LGE techniques employ 2 D breath-hold sequences, which are performed in 12–15 subsequent breath holds to cover the entire left ventricle (LV) in the short-axis view. Additional 2 D breath-hold LGE scans can be acquired in the long-axis views for a complete LV evaluation. Such 2 D LGE sequences generally provide very good image quality but may miss small infarcts due to the limited spatial resolution and associated partial volume effects. In addition, the repetitive breath holding can be challenging for elderly patients or patients with heart failure. Alternatively, free-breathing 3 D LGE imaging that is able to provide higher spatial resolution required for the visualization of small scar regions, and can be performed in patients who are unable to hold their breath, has been proposed. In addition, acquiring a whole-heart 3 D volume with (near) isotropic resolution enables the use of multplanar reformatting (MPR). Instead of being limited to prescribed short- and long-axis views, one can freely reconstruct any desired image orientation with sufficiently high spatial resolution (Fig. 5).

Initial 3 D implementations employed diaphragmatic navigators for respiratory motion correction and shorter acquisition windows to minimize cardiac motion but used the same magnetization preparation scheme and imaging sequence as the clinically used conventional 2 D LGE sequences [17, 18]. As the IR preparation pulse is set to null normal myocardium, it also leads to a very low liver signal which can compromise the performance of the respiratory navigator. To overcome this challenge, the use of a navigator restore pulse that re-inverted the longitudinal signal in the liver immediately after the IR preparation pulse was proposed.
While this approach was successful in improving the performance of the navigator, the restore pulse also labelled blood in the vena cava that could lead to a high blood signal in the right heart chambers, which was especially challenging for LGE imaging of the right atrium. To address the blood labelling effect, a time delay between the navigator and the imaging sequence has been proposed. However, this solution prohibits motion correction due to the prolonged delay between navigator and imaging sequence [19]. Another approach employed an adaptive flip angle for the navigator restore pulse and effectively reduced the blood labelling artifacts [20]. Another challenge of 3 D LGE are frequent arrhythmias which can disturb the steady state signal and consequently lead to severe ghosting artifacts. One solution is the use of an adaptive flip angle of the imaging sequence which has been shown to improve myocardial nulling and effectively reduced ghosting artifacts in the 3 D LGE images [20]. Finally, the prolonged acquisition times required for high-resolution 3 D LGE imaging are accompanied by a progressive decline in contrast agent concentration in the blood pool. As a result, the ideal TI to null the normal myocardium gradually increases. This limitation can be addressed by using a steadily increasing inversion time that optimizes tissue nulling for improved contrast [21].

While 3 D LGE imaging has become the reference for atrial scar imaging, it has not been widely adapted for LV scar imaging due to the unpredictable scan time related to respiratory motion gating. To address the relatively long scan time and associated washout of GBCA, single breath-hold 3 D LGE sequences have been proposed with and without [22, 23] undersampled reconstruction. While these approaches have provided promising results, they have not replaced 2 D LGE MRI due to their lower spatial resolution and lower scar to myocardium contrast. The main limitations of all 3 D implementations have been the prolonged and unpredictable scan time and ghosting artifacts from unsuppressed subcutaneous fat signal where shimming is less effective.

Fat/water separation methods

Although fat suppression in 2 D LGE MRI is not very common, it is crucial in free-breathing 3 D LGE to minimize ghosting artifacts from subcutaneous fat which can be pronounced in patients with irregular and/or deep breathing. Initial free-breathing navigator-gated 3 D LGE implementations employed a frequency selective fat saturation pulse to suppress epicardial, pericardial, and subcutaneous fat. Those sequences have been very effective on 1.5 T MRI scanners. However, at a higher field strength, fat suppression can sometimes be suboptimal due to larger B_0 inhomogeneity. This can cause unwanted ghosting artifacts from subcutaneous fat, which are more pronounced in LGE scans due to the relatively low overall signal to noise ratio (SNR). An alternative method for dealing with fat-related artifacts is the use of water-fat separation using the 2- or 3-point Dixon method, which allows the effective separation of the water from the fat signal, and which is relatively

[18] While this approach was successful in improving the performance of the navigator, the restore pulse also labelled blood in the vena cava that could lead to a high blood signal in the right heart chambers, which was especially challenging for LGE imaging of the right atrium. To address the blood labelling effect, a time delay between the navigator and the imaging sequence has been proposed. However, this solution prohibits motion correction due to the prolonged delay between navigator and imaging sequence [19]. Another approach employed an adaptive flip angle for the navigator restore pulse and effectively reduced the blood labelling artifacts [20]. Another challenge of 3 D LGE are frequent arrhythmias which can disturb the steady state signal and consequently lead to severe ghosting artifacts. One solution is the use of an adaptive flip angle of the imaging sequence which has been shown to improve myocardial nulling and effectively reduced ghosting artifacts in the 3 D LGE images [20]. Finally, the prolonged acquisition times required for high-resolution 3 D LGE imaging are accompanied by a progressive decline in contrast agent concentration in the blood pool. As a result, the ideal TI to null the normal myocardium gradually increases. This limitation can be addressed by using a steadily increasing inversion time that optimizes tissue nulling for improved contrast [21].

While 3 D LGE imaging has become the reference for atrial scar imaging, it has not been widely adapted for LV scar imaging due to the unpredictable scan time related to respiratory motion gating. To address the relatively long scan time and associated washout of GBCA, single breath-hold 3 D LGE sequences have been proposed with and without [22, 23] undersampled reconstruction. While these approaches have provided promising results, they have not replaced 2 D LGE MRI due to their lower spatial resolution and lower scar to myocardium contrast. The main limitations of all 3 D implementations have been the prolonged and unpredictable scan time and ghosting artifacts from unsuppressed subcutaneous fat signal where shimming is less effective.

Fat/water separation methods

Although fat suppression in 2 D LGE MRI is not very common, it is crucial in free-breathing 3 D LGE to minimize ghosting artifacts from subcutaneous fat which can be pronounced in patients with irregular and/or deep breathing. Initial free-breathing navigator-gated 3 D LGE implementations employed a frequency selective fat saturation pulse to suppress epicardial, pericardial, and subcutaneous fat. Those sequences have been very effective on 1.5 T MRI scanners. However, at a higher field strength, fat suppression can sometimes be suboptimal due to larger B_0 inhomogeneity. This can cause unwanted ghosting artifacts from subcutaneous fat, which are more pronounced in LGE scans due to the relatively low overall signal to noise ratio (SNR). An alternative method for dealing with fat-related artifacts is the use of water-fat separation using the 2- or 3-point Dixon method, which allows the effective separation of the water from the fat signal, and which is relatively
robust with respect to B₀ inhomogeneity at a higher field strength (Fig. 6). The Dixon water-fat separation methods acquire both an in-phase and out-of-phase image, where the water and fat signals are either in- or out-of-phase. Several reconstruction methods have been proposed (e.g., IDEAL [24], graph cut [25]), which allow for separation of the water and fat signals and consequently generation of a water-only and a fat-only image or volume. An added benefit of Dixon-based water-fat separation is the increased SNR due to the acquisition of two or three echoes. Moreover, Dixon LGE allows the detection of intramyocardial fatty infiltration, which is considered a risk factor for future cardiac events. The fat image also has been used to estimate respiratory motion, which can be beneficial, as the water signal is typically suppressed by the initial inversion pulse of the 3D LGE sequence.

Motion correction methods

As mentioned previously, free-breathing 3D LGE MRI requires respiratory motion correction. Initial approaches employing respiratory navigators suffer from long and unpredictable scan times. For these reasons, self-navigation [26] and image-navigation [27, 28] approaches have been proposed to enable 100% scan efficiency without the need for data rejection. The self-navigation approach proposed by Rutz et al. demonstrated improved myocardial border sharpness in comparison to the standard clinical 2D LGE sequence [26]. Image navigators in concert with non-rigid motion correction, a 2-point Dixon readout, and undersampled low-rank patch-based multi-contrast reconstruction (HD-PROST) enabled scar imaging with high spatial resolution (1.3 mm isotropic) in a scan time of approximately 8 minutes with good agreement with breath-hold 2D LGE MRI [28]. Motion tracking was facilitated by using the out-of-phase image navigator, which provided the best motion tracking fidelity in comparison to the in-phase, water-only, and fat-only navigator images. The 3D LGE imaging sequence was also evaluated in patients with an atrial scar and showed similar image quality compared to the diaphragmatic navigator (dNAV) technique, however, with a lower scan time compared to the dNAV (4.5 ± 1.2 min vs. 10.9 ± 3.9 min, p < 0.0001) [29].

Dark-blood methods

Although LGE can adequately distinguish hyperenhanced scar regions from normal myocardium, conventional (myocardium-nulled) LGE has its limitations. Due to the almost equally bright signal of the adjacent blood pool, detection of these small areas of ischemic scar is challenging. Even when successfully detecting such areas, identifying the exact scar-blood border remains difficult. Already more than 15 years ago, advances were made to increase scar-to-blood contrast using various additional magnetization preparation mechanisms. Over the years, numerous new LGE approaches have emerged to improve subendocardial scar conspicuity (Fig. 7) [108]. Although these methods achieve superior scar-to-blood contrast compared to conventional LGE, the majority require additional magnetization preparation.
schemes, including T2 preparation [30–33], magnetization transfer [34, 35], spin-locking [35], and the utilization of multiple inversion pulses [36, 37]. These additional schemes, however, require adjustments to the MRI system software and/or configuration, optimizations for new sequence and patient-specific parameters, and additional training for radiographers, radiologists, and cardiologists, thus hampering their introduction into routine clinical practices. Alternatively, a dark-blood LGE method that achieves increased scar-to-blood contrast without using additional magnetization preparation (blood-nulled PSIR LGE) was proposed, making it readily and widely available in every clinical routine setting [38, 39]. While most novel dark-blood methods have been compared with conventional LGE, only flow-independent dark-blood delayed enhancement (FIDDLE) and blood-nulled PSIR LGE have been validated against histology [34, 57]. Both methods demonstrated superior visualization and quantification of ischemic scar patterns compared to the current in-vivo reference standard; conventional myocardium-nulled LGE.
Scar quantification methods

For most clinical indications, visual assessment of LGE images is sufficient and quantitative analysis is primarily performed to measure LGE extent for research purposes. By today, no method for LGE quantification is universally accepted. Several techniques have been proposed including manual contouring, semi-automated approaches using signal intensity thresholds between two to six times the standard deviation from the normal myocardium, non-binary techniques, and the full width at half maximum (FWHM) approach [40, 41]. While manual contouring methods are time-consuming, semi-automated approaches require the definition of regions of interest in the remote and/or enhanced myocardium. Notably, different methods lead to somewhat varying results in regard to reproducibility and histology as the reference standard [42]. Therefore, accurate and objective LGE quantification remains a research tool without current clinical implementation.

Diagnostic value

The LGE technique has dramatically changed the role of CMR in the evaluation of cardiomyopathies as it is able to differentiate between ischemic and non-ischemic cardiomyopathies by identifying specific patterns of LGE [43]. Ischemic cardiomyopathies are characterized by an LGE pattern that involves the subendocardium and can extend up to the epicardium to form a transmural scar (so-called “wave front phenomenon” of ischemic cell death) in a territory of a coronary artery (Fig. 8). LGE imaging also provides insight into irreversible damage of the microvascular circulation by visualizing a microvascular obstruction (MVO), also known as the no-reflow phenomenon (Fig. 9). MVO can be identified as low or absent signal areas in LGE images and is typically located within the central portions of the infarcted tissue.

In contrast, non-ischemic cardiomyopathies are characterized by mid-wall, epicardial, or global endocardial LGE. Around 30% of patients with heart failure caused by dilated cardiomyopathy (DCM) present with mid-wall enhancement predominantly in the interventricular septum [44, 45]. Beside patients with heart failure, LGE – in conjunction with other anatomic and functional CMR parameters – is an incremental diagnostic tool for the assessment of various acute and chronic cardiomyopathies. LGE is a cornerstone technique to identify focal areas of myocardial injury – beside evidence for myocardial edema, the major criteria for the detection of acute myocarditis in the recently updated Lake Louise criteria [46]. Myocarditis typically affects the epicar-
• Fig. 7 Short-axis LGE images of three patients and one swine with (suspicion of) myocardial infarction acquired using conventional bright-blood LGE (top row) and dark-blood LGE (bottom row). Due to the almost equally high signal of the blood pool, conventional LGE suffers from poor scar-to-blood contrast which hampers the detection and delineation of enhanced regions (cyan arrowheads). Note that these indicated regions can be accurately visualised using dark-blood LGE. The shown dark-blood LGE images were acquired using the blood-nulled PSIR LGE approach [38].

Prognostic value

LGE is the current CMR standard to assess myocardial viability in ischemic cardiomyopathy. LGE allows the detection of even small subendocardial infarcts due to its superior spatial resolution, which may be missed by other imaging techniques with lower spatial resolution such as single-photon emission computed tomography [58–60]. LGE is also a reliable tool for the assessment of myocardial viability and the likelihood of recovery after revascularization [61]. Kim et al. could initially demonstrate an inverse
relation between the transmurality of LGE and the recovery of segmental contractile function after revascularization [62]. A transmurality of <50% has been shown to predict a very high likelihood for functional recovery, while functional improvement in segments with scar transmurality of >50% was only 8%. Various studies have confirmed these results in both acute and chronic infarct settings [63, 64].

The assessment of the extent of LGE in acute myocardial infarction has significant prognostic value. A meta-analysis incorporating 10 randomized trials with 2632 patients with acute myocardial infarction demonstrated that a 5% increase in infarct size correlates to a 20% increase in rates for all-cause mortality and heart failure-related hospitalization [65]. In addition, LGE extent was a strong predictor of major adverse cardiovascular events (MACE), independent of LV function [61]. However, MVO was a stronger independent predictor of LV dysfunction and post-infarct complications compared to LGE extent [66, 67]. Infarct size and MVO outperformed clinical risk scores and LV ejection fraction for the prediction of adverse events [67, 68]. MVO most likely represents irreparable tissue destruction and clinically relevant reperfusion injury, which are both parameters that have been linked to negative LV remodeling [69]. Hence, besides quantifying the size of the infarct, the evaluation of vascular integrity may have a relevant role for prognosis estimation in acute myocardial infarction. In chronic ischemic heart disease, LGE is a stronger predictor of clinical outcome than contractile reserve [70, 71].

The presence of LGE in patients with non-ischemic myocardial injury and cardiomyopathies is strongly associated with poor prognosis, including increased risk of all-cause mortality, heart failure hospitalization, and sudden cardiac death [72].

In DCM, LGE is associated with abnormal function and serves as a potential substrate for re-entrant ventricular arrhythmias [73]. Several studies have evaluated the prognostic implications of LGE in DCM patients [44, 74–76]. Recently, a large, multi-institutional study has followed 1672 patients with DCM over a median of 2.3 years and found a 1.5-fold increased risk of LGE for all-cause mortality, heart transplantation, or left ventricular assist device implantation [77]. In addition, LGE identifies patients who may not respond optimally to medical therapies, and therefore might play a role as a gatekeeper for intensified medical treatments or procedures such as ICD implantation [78]. However, there are currently no clinical guidelines supporting LGE as a relevant criterion for clinical decision-making and therapy indication.

In myocarditis, LGE has been identified as the best indicator of all-cause mortality in a series of 202 consecutive biopsy-proven viral myocarditis patients. Over a time period of 4.7 years, the presence of LGE increased all-cause and cardiac mortality by 8.4- and 12.8-fold, independent of clinical symptoms [79]. Furthermore, other larger prospective studies demonstrated that the location and extent of LGE were independent predictors of adverse cardiac events [80–82].

Several studies have examined the relationship between the presence of LGE and adverse outcomes in HCM. For example, the presence of LGE increased the risk for all-cause and cardiac mortality 5.5- and 8-fold over 3 years in 243 HCM patients [83]. A recent meta-analysis including 2993 patients with a follow-up over three years identified LGE as a powerful predictor of sudden cardiac death, all-cause mortality, and cardiovascular mortality [84]. In addition, this and another meta-analysis could also link the extent of LGE to a continuously increased risk of adverse events with higher amounts of scarring [84, 85].

The prognosis of amyloidosis is clearly influenced by the presence and severity of cardiac involvement [45]. The diagnostic performance of CMR and LGE has been well validated in cardiac amyloidosis. However, its prognostic value is controversial. Maceira et al. as well as Ruberg et al. could not demonstrate a relevant influence of the presence and extent of LGE on the short-term prognosis of cardiac amyloid patients in smaller study cohorts [48, 86]. Another study by Mekinian et al. could demonstrate a relationship between LGE and markers of ventricular dysfunction but failed to demonstrate the incremental prognostic value on mortality after the adjustment for confounding para-
meters [87]. Conversely, other studies with larger study populations identified LGE to be the strongest predictor of all-cause mortality [88–90]. These conflicting findings may be explained by the diffuse nature of amyloid as a disease, as LGE may miss diffuse changes of the myocardium.

Valvular heart disease such as aortic stenosis is an important and increasing public health problem, in particular with increasing prevalence in aging western population [91]. LGE imaging has been used for risk prediction in patients with aortic stenosis [92–94]. In aortic stenosis, fibrosis on LGE imaging is a useful biomarker of LV remodeling, and its presence is associated with a
worse long-term outcome after aortic valve intervention [94]. A systematic review and meta-analysis indicate that LGE is a powerful prognostic marker, conveying >2-fold higher risk of all-cause mortality in patients with aortic stenosis, even after adjusting for baseline characteristics [50].

Recently, an “umbrella” review of meta-analyses in various heart diseases using 33 meta-analyses demonstrated the highly suggestive evidence for a prognostic role of LGE in heart disease, which may be used to impact guidelines and therapeutic strategies in the future [95].

Discussion

As early as 1984, GBCAs have been used to study differences in normal and infarcted myocardium using MRI [96]. Ever since, the role of LGE imaging for the evaluation of myocardial viability has been extensively investigated in both animal models [2, 97, 98] and patient studies [99–101]. As of today, LGE imaging is the main component of cardiac MRI protocols on both 1.5 T and 3 T systems [102] and is performed in clinical routine settings all over the world on a daily basis.

As the use of LGE imaging has matured and the range of applications has broadened, the demand for increased resolution has grown and the need for improved contrast increased. In fact, for the assessment of thin-walled structures with a thickness of just a few millimeters, such as the atria and right ventricles, smaller voxels are required to reduce partial volume effects, while improved scar-to-blood contrast is crucial to detect small subendocardial lesions. Even though these demands have been partly addressed by recent developments such as the dark-blood and high-resolution 3 D techniques described earlier, these have not yet been widely implemented in clinical protocols outside of academic centers.

Despite the promising diagnostic and prognostic implications, LGE imaging has a limited capability to detect diffuse myocardial involvement, as myocardial enhancement must be compared to normal reference tissue. Mapping techniques, such as T1 and T2 mapping, however, measure intrinsic tissue properties, and therefore do not rely on reference tissue. Thus, mapping techniques are able to identify diffuse processes, such as inflammation in myocarditis or fibrosis in dilated cardiomyopathy, and have emerged as clinical tools for myocardial characterization [103, 104]. In the specific context of LGE imaging, T1 mapping has become a promising alternative technique to provide myocardial characterization.

On the other hand, LGE will play an increasingly important future role in the detection and assessment of atrial fibrillation, a common pathophysiological factor to the onset and maintenance of atrial fibrillation. The combination of high isotropic resolution and optimized dark-blood contrast is a promising approach to tackle the current problems with the thin atrial wall and poor scar-to-blood contrast. The use of high-resolution 3 D LGE may be evaluated for various indications, ranging from predicting the risk of cardiovascular events in patients with atrial fibrillation and predicting post-ablation arrhythmia recurrence, to guiding atrial fibrillation ablations and mapping post-ablation scar patterns to guide potential repeat procedures. High-resolution 3 D LGE, however, may also prove beneficial for assessing the larger ventricles. Potential clinical benefits that should be evaluated include the improved ability to detect microstructural fibrosis which is important for patients with presumed idiopathic ventricular fibrillation and the ability to perform accurate multiplanar reconstructions for the assessment of papillary muscle scar. This may pave the way for improved diagnostic accuracy and prognosis but also plays an important role in the work-up towards personalized treatment of patients with (supra)ventricular tachyarrhythmias.

As the number of patients with cardiac devices is increasing, future research may focus on LGE techniques that are robust for local disturbances in the main magnetic field caused by such devices. The use of wideband LGE sequences may help minimize image artifacts caused by these disturbances at both 1.5 T and 3 T [105, 106]. However, since clinical evidence is limited, additional research is required to enable widespread clinical adoption.

In addition, the recent introduction of compressed sensing by the major vendors enabled widespread use of sparse imaging techniques, achieving acceleration factors that have not previously been possible to attain with parallel imaging alone. Artificial intelligence-based reconstruction techniques may be used to further push the use of compressed sensing methods [107], achieving high-resolution 3 D LGE acquisitions of the entire heart in a matter of minutes.

In conclusion, LGE imaging remains the current noninvasive reference standard for the assessment of myocardial viability. Improvements in spatial resolution, scar-to-blood contrast, and water/fat-separated imaging further strengthened this position. LGE will play an increasingly important role in the diagnosis, prognosis, and treatment planning of patients with (supra)ventricular cardiac arrhythmias.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[34] Kim HW, Rehwald WG, Jenista ER et al. Dark-blood delayed enhancement magnetic cardiac resonance of myocardial infarction. JACC Cardiovasc Imaging 2018; 11: 1758–1769

Holtackers RJ et al. Late Gadolinium Enhancement... Fortschr Röntgenstr | © 2022. Thieme. All rights reserved.

[88] Austin BA, Tang WH, Rodriguez ER et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovascular Imaging 2009; 2: 1369–1377

[103] Ugander M, Bagi PS, Oki AJ et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovascular Imaging 2012; 5: 596–603

[105] Ranjan R, McGann CJ, Jeong EK et al. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: A feasibility study at 3 T. Europace 2015; 17: 483–488
