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ABSTRACT

Considering the widespread occurrence of antibiotic resistance,
the need for new therapeutic strategies is inevitable. Bacterial
proteases are a broad set of enzymes that play a vital role in cell
survival, stress response, and pathogenicity. This in silico study
was aimed to focus on the crucial role of Lon protease in the
regulation of toxin-antitoxin systems in E. coli and to design
inhibitory peptides against the action of this protease. With the
help of relevant servers and softwares, the communication
network, the evolutionary history, and the interaction of Lon
with the corresponding antitoxins were examined, following
which the inhibitory peptides were designed against these in-
teractions. The results showed that Lon protease plays a central
role in the control of these systems and is a conserved protein,
especially among the Enterobacteriaceae family. The docking
results of the designed peptides with the Lon protease were
significant. This study showed that Lon protease may have the
characteristics of a new therapeutic target.

Introduction

Over the last decade, the issue of antimicrobial resistance has chal-
lenged the eradication of bacterial infections [1, 2]. Antibiotic re-
sistance due to mutation or the acquisition of resistance genes may
occur regardless of antibiotic exposure. However, the presence of
these agentsinduces a dramatic increase in the incidence of resist-
ant bacteria [3]. This underscores the necessity of designing novel
antibacterial agents [4]. Despite many efforts to modify the pre-
sent antimicrobial drugs, only a few have proven effective against

resistant bacteria [4]. One practical approach to overcome this
problem is the identification of potential bacterial targets for de-
veloping suitable therapeutic agents [4]. Recent studies about the
bacterial physiology and behavior have paved the way for the iden-
tification of a variety targets, among which Lon protease in Escher-
ichia coli strains is an interesting one [5].

Lon protease, the first identified ATP-dependent serine protease
with a highly conserved structure, is a homo-oligomer with ATPase
and proteolytic domains [6]. Lon has a crucial role in the protein qual-
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ity control system, getting involved in the eradication of aberrant
and misfolded proteins and the selective degradation of regulatory
proteins, including those associated with cell division, capsule syn-
thesis, and SOS response, thereby modulating numerous metabolic
and stress response pathways [6, 7]. Lon also contributes to the cleav-
age of antitoxins in toxin-antitoxin (TA) systems, where the related
liberated toxins can inhibit bacterial growth by suppressing transla-
tion or replication [7, 8]. Activation of TA systems through antitoxin
degradation could result in a variety of phenotypes, but the most
frequently observed are those connected with growth inhibition,
persistence, programmed cell death, and biofilm formation [7, 9].
The ubiquitousness of these systems among clinical strains and their
absence in eukaryotic organisms makes them ideal targets for the
development of suitable agents and the subsequent treatment of
E. coliinfections. In general, protein-protein interactions (PPIs) play
avital role in many biological processes and are associated with can-
cers and infectious diseases, accordingly, targeting PPIs can be a
promising therapeutic strategy [10, 11]. Considering the regulatory
and central role of Lon protease in the functionality of the TA sys-
tems, we aimed to study the bioinformatics of Lon and its interac-
tion with related TA systems, as well as designing interfering pep-
tides for restraining Lon-antitoxin interactions.

Methods

Lon and TA system network

In order to predict the interacting protein network associated with
Lon and the corresponding TA systems, the STRING’s server was
used.

Conserved domains and consensus sequences of the
Lon gene

The results of PSI-BLAST were introduced into the Jalview 2.8.1 and
the alignment file with the respective gap open cost and gap ex-
tension cost of 10.0 and 1.0 was created [12]. Conserved domains
were acquired from the Pfam 32.0 database by multiple sequence
alignments and hidden Markov models (HMMs) [13].

Phylogenetic study of the Lon

To study the phylogeny of the Lon protein, the results of the PSI-
BLAST with at least 60 % identity were chosen. Following the omis-
sion of duplicates and redundant sequences, molecular phylogeny
was inspected using Maximum Likelihood method by keeping boot-
strap value 200. The evolutionary background was deduced with
reference to the JTT matrix-based model. Evolutionary analyses
were performed in MEGAX [14].

> Table 1 Characteristics of the predicted peptides against Lon/antitoxin interactions.

TA (PDB code) Complex inhibited Peptide sequence Interface score Relative interface Score (%) Binding energy
3G7Z Lon/CcdA EVARFIEMNGSFADEN -20.630 44.04 -652.9
2WIU Lon/HipB TLTTFFKILQSLELSMTL -16.071 38.68 -729.3
1UB4 Lon/MazE DITPENLHENIDWGEP -29.437 49.47 -704.7
4FXE Lon/RelB PSEALRLMLEYIADNE -23.234 56.72 -595.3
3HI2 Lon/MgsA VHCEESIMNKEESDAF -12.090 45.89 -696.1
2A6Q Lon/YefM MSLEEYNSLEETAYLL -6.267 54.42 -746.6

> Fig. 1 Protein-protein interaction network associated with Lon protease and the corresponding ATs using the STRING server. In addition to the
antitoxins CcdA, HipB, MazE, RelB, MqsA, and YefM, Lon has controlling roles over several other TA systems in E. coli including HicB and HigA.
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> Fig. 2 Results of domain and phylum analysis of the Lon protease using P!
bacteria.

Lon proteases and their interactions with
corresponding ATs in E. coli

To date, numerous TA systems have been detected in E. coli how-
ever, in this study we concentrated on the dominant TA systems
controlled by the Lon protease, the antitoxins component of which
include CcdA, HipB, MazE, RelB, MgsA, and YefM [15]. First, the TA
and Lon structures were extracted from the protein data bank (PDB)
database (> Table 1). Then, to explicate the interaction between
Lon protease and the studied ATs, molecular docking was conduct-
ed for the proteolytic domain of Lon and ATs using the ClusPro serv-
er [16]. To elucidate the interacting residues, protein complexes
with minimum binding energy were selected and envisioned using
the LigPlot + software [17].

Prediction of peptide-mediated interactions

Peptides capable of obstructing Lon/AT interactions in E. coli were
designed using the Peptiderive server [18]. This server provides lin-
ear peptides for a specific protein-protein interaction based on “hot

hylomeDB [21]. Lon is conserved among major lineages of the domain

segments”, which provides an interface score representative of the
binding energy of the protein-peptide complex at that particular
position.

The tertiary structures of the peptides were predicted using the
PEP-FOLD server [19], following which the protein-peptide dock-
ing was performed using the Cluspro server.

Visual presentations

Protein-peptide interactions were visualized and recorded using
Pymol [20] and LigPlot + software.

Results and Discussion

Due to the emergence of antibiotic resistance among many bacte-
ria, finding new antimicrobial targets is essential [1]. Bacteria ap-
pear to have found effective ways to neutralize antibiotics. There-
fore, the study of new targets such as vital enzymes, signaling path-
ways, efflux pumps, etc. can be an alternative approach [21]. In E.
coli, as one of the most important pathogenic bacteria, Lon pro-
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» Fig. 3 Maximum likelihood tree using JTT matrix-based model. Numbers at each node are bootstrap percentages for 200 replicates. Evolutionary

analyses were performed in MEGAX.

tease is a vital protein for bacterial growth, metabolism, and sur-
vival [6]. One of the interesting mechanisms of this protease is its
regulatory role in toxin-antitoxin (TA) systems [8].

TA systems have received much attention in recent years. Vari-
ous studies have shown that these systems help bacterial survival
in stress conditions through different mechanisms including bio-
film and persistence development, which lead to chronic and re-
current infections [22]. The activity of these systems is controlled
by proteases such as Lon, which break down the antitoxin compo-

nentin stress conditions to liberate the toxin component. The toxin
is thereby released to inhibit bacterial growth via different mecha-
nisms [8].

Today, with the tremendous increase of bio-data in databases
and the significant development of bioinformatics and computa-
tional tools, it is possible to work more quickly in the in-silico space
on the screening, identification, prediction, and design of antimi-
crobial compounds.
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» Fig. 4 Cartoon representation of the 3D structure and interactions of the Lon protease with the CcdA antitoxin. Red color indicates Lon protease

and the green color indicates CcdA antitoxin.

Therefore, this study has focused on the structure, evolution,
and regulatory function of the Lon protease of TA systems in E. coli
as a new antimicrobial target and finally the design of inhibitory
peptides to neutralize its regulatory effect. The results of function-
al connective networks of Lon and the corresponding ATs using the
STRING database (> Fig. 1) showed that in addition to the antitox-
ins CcdA, HipB, MazE, RelB, MgsA, and YefM, Lon has controlling
roles over several other TA systems in E. coli including HicB and
HigA, necessitating more studies in this field.

Lon has a majorrole in controlling the functional network of the
systems shown in > Fig. 1; along with other proteins that may be
involved in this network (> Fig. 1). Structural analysis of the Lon
protease indicated three domains, including the substrate-binding
domain, the AAA-rich domain with several cellular activities, and
the C-terminal domain with proteolytic activity (> Fig. 2). Moreo-
ver, phylogenetic analysis of Lon indicated its presence in a con-
served manner (especially in the C-terminal region) among the En-
terobacteriaceae family (> Fig. 3).

The results of the phylogenetic tree showed that this protease
has a common ancestor among the bacteria of this family in terms
of evolutionary distance, which has been fully protected over time.
Moreover, its homologous can be found in all bacteria known until

now (> Fig. 2) indicating the importance of this protease in bacte-
rial homeostasis; hence being a suitable target for antimicrobial
purposes. To investigate how the Lon protease interacts with the
studied antitoxins, the docking technique was performed by the
ClusPro server and to understand the functionally interacting res-
idues, protein complexes with the lowest binding energy were cho-
sen and visualized using LigPlot + software. The amino acids in-
volved in these interactions are shown in > Figs. 4-9.

Inrecent years, peptide drugs such as natural or synthetic inter-
fering peptides have received much attention due to their physical
and chemical properties, and ease of synthesis and handling
[11,23,24]. Online servers and computational soft wares have
been used in this study to design interfering linear peptides (Pep-
tide drive server) to interfere with the Lon/antitoxin interactions.
The sequence of these peptides is shown in > Table 1.

To evaluate the binding energy of these peptides, the 3-D struc-
ture of the peptides was first modeled using the PEP-FOLD server
(» Fig. 10) and then docked with the Lon protease using the Clus-
Pro server. The results of this section showed that the linear pep-
tide EVARFIEMNGSFADEN has 16 amino acids in length and can bind
to 26 residues of the Lon protease with a binding energy of -652.9,
interfering the Lon/CcdA interaction (> Fig. 11a).
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> Fig. 5 Cartoon representation of the 3D structure and interactions of the Lon protease with the HipB antitoxin. Red color indicates Lon protease

the green color indicates HipB antitoxin.

CcdA is the antitoxin component of the CcdA/B TA system that
is involved in the maintenance of plasmids and the death of plas-
mid-deficient cells in E. coli (Post-segregational killing) [25]. An-
other peptide designed in this study had the TLTTFFKILQSLELSMTL
sequence that could bind to the interface of the Lon/HipB, with a
binding energy of -729.3 (> Fig. 11b ). The hipB antitoxin gene is
located on the upstream of the hipA/B operon. Studies have shown
that this antitoxin plays a role in the formation of E. coli biofilm, such
that its removal reduces the ability to biofilm formation [26].
MazE/F TAis one of the most well-known and conserved TA systems
among bacteria which, in stress conditions, is involved in pro-
grammed cell death as well as biofilm formation [27]. To inhibit the
regulatory effect of the Lon protease on this system and interfere
with the Lon/MazE interaction, the 16-amino acid linear peptide
DITPENLHENIDWGEP was predicated by the Peptide Drive server.
It should be noted that the linear peptides designed in this study
are derived from the amino acid structure of the studied antitox-

ins, which mimic the behavior of antitoxins in binding to the Lon
protease. Information on other peptides designed to interfere with
the interaction of the Lon protease with RelB, MgsA, and YefM an-
titoxins are shown in » Table 1 and » Figs. 11a-f. In general, the
docking results of the designed peptides to the Lon protease and
their binding energy have proven encouraging as means of inter-
fering with these TA systems.

The vital roles of Lon and its homologues among bacteria have
made this protease an attractive antimicrobial target for research-
ers. In a study in 2019, M. Babin et al. examined the effects of dif-
ferent hybrid peptides on the Lon protease inhibition in E. coli. They
screened various peptide compounds and showed that boronic acid
has efficient Lon-binding and -inhibitory capacity. Their results
showed that interfering with this protease accelerates the UV in-
duction of bacterial filamentous structure and also reduces bacte-
rial tolerance to the antibiotic ciprofloxacin [28].
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> Fig. 8 Cartoon representation of the 3D structure and interactions of the Lon protease with the MgsA antitoxin. Red color indicates Lon protease

and the green color indicates MgsA antitoxin.

In 2020, in an in silico study on TA systems and ClpP regulatory
protease in Listeria monocytogenes, Mohammadzadeh et al. showed
that the interaction between the studies TA systems and the ClpP
regulatory protease could be a new target for antimicrobial pep-
tides. In that study, they predicted linear peptides of 10 to 16 amino
acids with ClpP-binding energies of 455 to -907 and stated that
these peptides could eventually inhibit or reduce the formation of
persister cells in L. monogytogenes [29].

In another study, Suredr et al. designed the linear peptides
ELAAIRHRCA and AYPYESEAER to inhibit the TA systems VapB/C
and Mazk/[F in Mycobacterium tuberculosis, respectively. They de-
clared that these peptides could be new therapeutic compounds
against this bacterium given that TA systems are not present
among Eukaryotic cells [30].

Peptide-based therapies are being developed because of their
ease of design and production, and their encouraging properties

such as being highly efficient, selective and well-tolerated by the host
[11]. In general, the results of this study showed useful information
about the structure and binding properties of the Lon protease and
its corresponding antitoxins. Lon, as a central regulatory protease,
plays crucial roles in bacterial survival and has characteristics that
make it a suitable therapeutic target against antibiotic-resistant bac-
teriaincluding E. coli. The design and use of peptides to interfere and
inhibit PPIs in bacteria can be an interesting platform for investigat-
ing and outlining new antimicrobial approaches.
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