Synlett 2022; 33(12): 1137-1141
DOI: 10.1055/a-1709-0280
cluster
Organic Photoredox Catalysis in Synthesis – Honoring Prof. Shunichi Fukuzumi’s 70th Birthday

A Highly Durable, Self-Photosensitized Mononuclear Ruthenium Catalyst for CO2 Reduction

Kenji Kamada
a   Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Hiroko Okuwa
a   Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Taku Wakabayashi
a   Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Keita Sekizawa
b   Toyota Central R&D Laboratories, Inc., Nagakute 480-1192, Japan
,
Shunsuke Sato
b   Toyota Central R&D Laboratories, Inc., Nagakute 480-1192, Japan
,
Takeshi Morikawa
b   Toyota Central R&D Laboratories, Inc., Nagakute 480-1192, Japan
,
Jieun Jung
a   Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Susumu Saito
a   Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
c   Research Center for Materials Science (RCMS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
› Author Affiliations
This work was supported by the Asahi Glass Foundation (Step-up-grant to S.S.), the Japan Society for the Promotion of Science (Scientific Research (B) 19H02713 to S.S. and Early-Career Scientists 21K14642 to J. J.), and partially by the Ministry of the Environment of the Government of Japan.


Abstract

A novel mononuclear ruthenium (Ru) complex bearing a PNNP-type tetradentate ligand is introduced here as a self-photosensitized catalyst for the reduction of carbon dioxide (CO2). When the pre-activation of the Ru complex by reaction with a base was carried out, an induction period of catalyst almost disappeared and the catalyst turnover numbers (TONs) over a reaction time of 144 h reached 307 and 489 for carbon monoxide (CO) and for formic acid (HCO2H), respectively. The complex has a long lifespan as a dual photosensitizer and reduction catalyst, due to the sterically bulky and structurally robust (PNNP)Ru framework. Isotope-labeling experiments under 13CO2 atmosphere indicate that CO and HCO2H were both produced from CO2.

Supporting Information



Publication History

Received: 30 August 2021

Accepted after revision: 29 November 2021

Accepted Manuscript online:
29 November 2021

Article published online:
05 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Fukuzumi S. Joule 2017; 1: 689
    • 1b Fukuzumi S, Lee Y.-M, Nam W. ChemPhotoChem 2018; 2: 121
    • 1c El-Khouly ME, El-Mohsnawy E, Fukuzumi S. J. Photochem. Photobiol., C 2017; 31: 36
    • 1d Mase K, Yoneda M, Yamada Y, Fukuzumi S. ACS Energy Lett. 2016; 1: 913
    • 1e Yoshioka S, Jung J, Saito S. J. Synth. Org. Chem., Jpn. 2020; 78: 856
    • 2a Aoi S, Mase K, Ohkubo K, Suenobu T, Fukuzumi S. ACS Energy Lett. 2017; 2: 532
    • 2b Aoi S, Mase K, Ohkubo K, Fukuzumi S. Chem. Commun. 2015; 51: 10226
    • 2c Rintjema J, Kleij AW. Synthesis 2016; 48: 3863
    • 2d O’Brien CJ, Nicewicz DA. Synlett 2021; 32: 814
    • 2e Luo Y, Chan B, Fukuda T, Onodera G, Kimura M. Synlett 2021; 32: 1551
    • 2f Azzouz R, Moreno VC, Herasme-Grullon C, Levacher V, Estel L, Ledoux A, Derrouiche S, Marsais F, Bischoff L. Synlett 2020; 31: 183
    • 2g Matsuo H, Fujii A, Choi J.-C, Fujitani T, Fujita K. Synlett 2019; 30: 1914
    • 2h Doi R, Okano T, Abdullah I, Sato Y. Synlett 2019; 30: 1048
    • 2i Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
    • 2j Saravanan A, Senthil Kumar P, Vo D.-VN, Jeevanantham S, Bhuvaneswari V, Anantha Narayanan V, Yaashikaa PR, Swetha S, Reshma B. Chem. Eng. Sci. 2021; 236: 116515
    • 2k Batrice RJ, Gordon JC. RSC Adv. 2021; 11: 87
    • 3a Fukuzumi S, Lee Y.-M, Ahn HS, Nam W. Chem. Sci. 2018; 9: 6017
    • 3b Aresta M, Dibenedetto A. Dalton Trans. 2007; 2975
    • 3c Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Chem. Soc. Rev. 2009; 38: 89
    • 3d Perazio A, Lowe G, Gobetto R, Bonin J, Robert M. Coord. Chem. Rev. 2021; 443: 214018
    • 3e Le QV, Nguyen V.-H, Nguyen TD, Sharma A, Rahman G, Nguyen DL. T. Chem. Eng. Sci. 2021; 237: 116547
    • 3f Cauwenbergh R, Das S. Green. Chem. 2021; 23: 2553
    • 3g Pan H, Heagy MD. Nanomaterials 2020; 10: 2422
    • 3h Li X, Yu J, Jaroniec M, Chen X. Chem. Rev. 2019; 119: 3962
    • 4a Aoi S, Mase K, Ohkubo K, Fukuzumi S. Catal. Sci. Technol. 2016; 6: 4077
    • 4b Zhuo T.-C, Song Y, Zhuang G.-L, Chang L.-P, Yao S, Zhang W, Wang Y, Wang P, Lin W, Lu T.-B, Zhang Z.-M. J. Am. Chem. Soc. 2021; 143: 6114
    • 4c Nakada A, Kumagai H, Robert M, Ishitani O, Maeda K. Acc. Mater. Res. 2021; 2: 458
    • 4d Ma B, Chen G, Fave C, Chen L, Kuriki R, Maeda K, Ishitani O, Lau T.-C, Bonin J, Robert M. J. Am. Chem. Soc. 2020; 142: 6188
    • 4e Chen W.-P, Liao P.-Q, Jin P.-B, Zhang L, Ling B.-K, Wang S.-C, Chan Y.-T, Chen X.-M, Zheng Y.-Z. J. Am. Chem. Soc. 2020; 142: 4663
  • 5 Koppenol WH, Rush JD. J. Phys. Chem. 1987; 91: 4429
  • 6 Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
    • 7a Yamazaki Y, Takeda H, Ishitani O. J. Photochem. Photobiol., C 2015; 25: 106
    • 7b Elgrishi N, Chambers MB, Wang X, Fontecave M. Chem. Soc. Rev. 2017; 46: 761
    • 7c Sahara G, Ishitani O. Inorg. Chem. 2015; 54: 5096
    • 8a Yuan H, Cheng B, Lei J, Jiang L, Han Z. Nat. Commun. 2021; 12: 1835
    • 8b Lee SE, Nasirian A, Kim YE, Fard PT, Kim Y, Jeong B, Kim S.-J, Baeg J.-O, Kim J. J. Am. Chem. Soc. 2020; 142: 19142
    • 8c Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J. Am. Chem. Soc. 2017; 139: 6538
    • 8d Hong D, Kawanishi T, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J. Am. Chem. Soc. 2019; 141: 20309
    • 8e Zhang X, Cibian M, Call A, Yamauchi K, Sakai K. ACS Catal. 2019; 9: 11263
    • 8f Rao H, Schmidt LC, Bonin J, Robert M. Nature 2017; 548: 74
    • 8g Guo Z, Cheng S, Cometto C, Anxolabéhère-Mallart E, Ng S.-M, Ko C.-C, Liu G, Chen L, Robert M, Lau T.-C. J. Am. Chem. Soc. 2016; 138: 9413
    • 9a Call A, Cibian M, Yamamoto K, Nakazono T, Yamauchi K, Sakai K. ACS Catal. 2019; 9: 4867
    • 9b Rodrigues RR, Boudreaux CM, Papish ET, Delcamp JH. ACS Appl. Energy Mater. 2019; 2: 37
    • 9c Rao H, Bonin J, Robert M. ChemSusChem 2017; 10: 4447
  • 10 Yoshioka S, Nimura S, Naruto M, Saito S. Sci. Adv. 2020; 6: eabc0274
    • 11a Miura T, Held IE, Oishi S, Naruto M, Saito S. Tetrahedron Lett. 2013; 54: 2674
    • 11b Miura T, Naruto M, Toda K, Shimomura T, Saito S. Sci. Rep. 2017; 7: 1586
    • 12a Costentin C, Drouet S, Robert M, Savéant J.-M. Science 2012; 338: 90
    • 12b Costentin C, Passard G, Robert M, Savéant J.-M. J. Am. Chem. Soc. 2014; 136: 11821
    • 12c Haviv E, Azaiza-Dabbah D, Carmieli R, Avram L, Martin JM. L, Neumann R. J. Am. Chem. Soc. 2018; 140: 12451
  • 13 Kamada K, Jung J, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. J. Am. Chem. Soc. 2020; 142: 10261
    • 14a Takeda H, Koike K, Inoue H, Ishitani O. J. Am. Chem. Soc. 2008; 130: 2023
    • 14b Sampson MD, Froehlich JD, Smieja JM, Benson EE, Sharp ID, Kubiak CP. Energy Environ. Sci. 2013; 6: 3748
    • 14c Maurin A, Ng C.-O, Chen L, Lau T.-C, Robert M, Ko C.-C. Dalton Trans. 2016; 45: 14524
    • 14d Hameed Y, Berro P, Gabidullin B, Richeson D. Chem. Commun. 2019; 55: 11041
    • 14e Talukdar K, Roy SS, Amatya E, Sleeper EA, Magueres PL, Jurss JW. Inorg. Chem. 2020; 59: 6087
    • 15a Sato S, Morikawa T, Kajino T, Ishitani O. Angew. Chem. Int. Ed. 2013; 52: 988
    • 15b Garg K, Matsubara Y, Ertem MZ, Lewandowska-Andralojc A, Sato S, Szalda DJ, Muckerman JT, Fujita E. Angew. Chem. Int. Ed. 2015; 54: 14128
    • 15c Genoni A, Chirdon DN, Boniolo M, Sartorel A, Bernhard S, Bonchio M. ACS Catal. 2017; 7: 154
    • 15d Sato S, Morikawa T. ChemPhotoChem 2018; 2: 207
    • 15e Qi X, Zhong R, Chen M, Sun C, You S, Gu J, Shan G, Cui D, Wang X, Su Z. ACS Catal. 2021; 11: 7241
    • 16a Chauvin J, Lafolet F, Chardon-Noblat S, Deronzier A, Jakonen M, Haukka M. Chem. Eur. J. 2011; 17: 4313
    • 16b Castillo CE, Armstrong J, Laurila E, Oresmaa L, Haukka M, Chauvin J, Chardon-Noblat S, Deronzier A. ChemCatChem 2016; 8: 2667
    • 17a Rao H, Bonin J, Robert M. Chem. Commun. 2017; 53: 2830
    • 17b Bonin J, Chaussemier M, Robert M, Routier M. ChemCatChem 2014; 6: 3200
    • 17c Behar D, Dhanasekaran T, Neta P, Hosten CM, Ejeh D, Hambright P, Fujita E. J. Phys. Chem. A 1998; 102: 2870
    • 18a Das S, Rodrigues RR, Lamb RW, Qu F, Reinheimer E, Boudreaux CM, Webster CE, Delcamp JH, Papish ET. Inorg. Chem. 2019; 58: 8012
    • 18b Lee SK, Kondo M, Okamura M, Enomoto T, Nakamura G, Masaoka S. J. Am. Chem. Soc. 2018; 140: 16899
    • 18c Hawecker J, Lehn J.-M, Ziessel R. J. Chem. Soc., Chem. Commun. 1985; 56
  • 19 Experimental Conditions Photocatalytic reactions were performed at atmospheric pressure in 8 mL test tubes containing 4 mL of a DMA/TEOA (5:1 v/v) solution purged with CO2 for 10 min, a Ru complex (0.1 mM), and BIH (0.10 M). The solutions were irradiated in a turntable irradiation apparatus at room temperature using a Xe lamp (300 W) combined with a UV-cut filter having a cutoff wavelength of below 400 nm and a UV- and IR-cut filter ranging from 385 nm to 740 nm. The gaseous reaction products were analyzed using a micro-GC (Agilent 490) equipped with a thermal conductivity detector (column: MS5A 10-m BF column; isothermal at 80 °C; carrier gas: Ar), and the products in the solution were analyzed using Prominence Organic Acid Analysis System (SCR-102H column; column temp: 40 °C; cell temp: 43 °C). The reaction set-up is shown in Figure S11 (see the Supporting­ Information).
  • 20 Pre-activation of Ru-1 with a 2–8 equiv of KOt-Bu gave UV/Vis absorption spectra almost identical with one another, indicating that the photoactive complex is stable in the presence of excess KOt-Bu (Figure S3). Although 1H NMR (CD3CN) measurements of Ru-1·2KOt-Bu showed a RuH signal (J P–H = 26.4 Hz, triplet) at –16.3 ppm, it was difficult to determine the exact structure due to the overall intractable/inscrutable spectrum (Figures S19). In Figure S2, the structure of the pre-activated Ru complex was proposed merely on the basis of ESI-(HR)MS measurement.
  • 21 Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2006; 45: 1113
    • 22a Suna Y, Himeda Y, Fujita E, Muckerman JT, Ertem MZ. ChemSusChem 2017; 10: 4535
    • 22b Hufziger KT, Thowfeik FS, Charboneau DJ, Nieto I, Dougherty WG, Kassel WS, Dudley TJ, Merino EJ, Papish ET, Paul JJ. J. Inorg. Biochem. 2014; 130: 103
    • 22c Tawarah KM, Abu-Shamleh HM. Dyes Pigm. 1991; 16: 241
  • 23 DFT calculations of the HOMO–LUMO gaps of Ru-1 and the proposed structure of the pre-activated Ru complex which lost Cl and a bipyridyl CH2P hydrogen also suggest that the complex which has a quinoid structure could absorb longer wavelengths than Ru-1 (Figure S12).
  • 24 Hatchard CG, Parker CA. Proc. R. Soc. London, Ser. A 1956; 235: 518